
ITT8060
Advanced Programming

In F#

Juhan Ernits, Hendrik Maarand, Ian Erik Varatalu

Department of Software Science

Welcome to
Advanced Programming (in F#)!

• Course team:
– Juhan Ernits
– Hendrik Maarand
– Ian Erik Varatalu

• Course web page
– https://fsharp.pages.taltech.ee
– Contact:

juhan.ernits@taltech.ee
– Online meetings: Teams team (with Taltech Uni-ID), Team ID for joining wir5fe1:

https://teams.microsoft.com/l/team/19%3A189vuW9lKcwVkPySM8d-
NsIpnRNBXvzuDVIRplPYjLM1%40thread.tacv2/conversations?groupId=e5089253-ad39-4288-
b2a1-c3ae878f9b30&tenantId=3efd4d88-9b88-4fc9-b6c0-c7ca50f1db57
Moodle (gradebook, links to videos, coursework feedback, ...), enrollment key itt8060-2024:
https://moodle.taltech.ee/enrol/instances.php?id=33950

https://fsharp.pages.taltech.ee/
mailto:juhan.ernits@ttu.ee
https://teams.microsoft.com/l/team/19%3A189vuW9lKcwVkPySM8d-NsIpnRNBXvzuDVIRplPYjLM1%40thread.tacv2/conversations?groupId=e5089253-ad39-4288-b2a1-c3ae878f9b30&tenantId=3efd4d88-9b88-4fc9-b6c0-c7ca50f1db57
https://teams.microsoft.com/l/team/19%3A189vuW9lKcwVkPySM8d-NsIpnRNBXvzuDVIRplPYjLM1%40thread.tacv2/conversations?groupId=e5089253-ad39-4288-b2a1-c3ae878f9b30&tenantId=3efd4d88-9b88-4fc9-b6c0-c7ca50f1db57
https://teams.microsoft.com/l/team/19%3A189vuW9lKcwVkPySM8d-NsIpnRNBXvzuDVIRplPYjLM1%40thread.tacv2/conversations?groupId=e5089253-ad39-4288-b2a1-c3ae878f9b30&tenantId=3efd4d88-9b88-4fc9-b6c0-c7ca50f1db57
https://moodle.taltech.ee/enrol/instances.php?id=33950

Textbooks

• Main textbook
– Michael R. Hansen and Hans Rischel: Functional Programming using F# (paper copies in

libraries and online access from Taltech network:
Functional Programming Using F# (cambridge.org)

• Additional textbook
– Tomas Petricek with Jon Skeet: Real-world functional programming with examples in F#

and C#
• 10 copies at Taltech: http://tallinn.ester.ee/record=b2780259~S1*eng
• Several copies available in Tartu

• Additional textbook
– Don Syme: Expert F# 3.0 and Expert F# 4.0

• 5 copies at Taltech: http://tallinn.ester.ee/record=b2994544~S1*eng
• Several copies available in Tartu

• More materials at https://fsharp.org/learn/

https://www.cambridge.org/core/books/functional-programming-using-f/BAB494BBE8AEBB13486F9A8362273D41
http://tallinn.ester.ee/record=b2780259~S1*eng
http://tallinn.ester.ee/record=b2994544~S1*eng
https://fsharp.org/learn/

Structure of the course

• The course runs for 16 weeks

• Lectures

– Room U05-103, lectures get recorded

• Lab sessions

– Rooms

• Wed 12:00: ICT-122 (IVSM (in English), we will record broadcast sessions)

• Thu 8:00: ICT-401 (IAPM (in Estonian))

Structure of the assessment

• Coursework 45% of the final mark
– 9 courseworks, each counting for 5%. Courseworks are mapped to concepts.
– The coursework should be your own work.
– You should be able to explain your work to the lab assistant upon request.
– Your mark will be cancelled if you are not able to explain your own solutions to courseworks.
– There may be some bonus courseworks available.

• An in class test in week 9, 5% of the final mark. (October 30, 2024)
– You need to be there to get the 5%!
– An indication of your progress.

• Exam 50% of the final mark
– Written
– You need to get at least 50% of exam total in order to pass.

• (Strictly enforced)
• Exam times:

– Wednesday, Jan 8, 2025. 11:00 Tallinn, Tartu.
Wednesday, Jan 15, 2025. 11:00 Tallinn
Wednesday, Jan 22, 2025. 11:00 Tallinn

Advanced Programming
(in F#)

You can all write programs!

• What is your first programming language?

Elixir
Lean
Clojure
C++
C#
C
Javascript
Python
PHP
Objective C
Erlang

Swift
F#
Haskell
OCaml
Scala
Idris
Whitespace
Prolog
TypeScript
Kotlin
Agda

Why F# of many functional languages

• Kotlin
• Scala
• Elixir
• Erlang
• Common Lisp (Emacs)

– Many dialects, Clojure, Racket, Scheme, etc

• Haskell
• Agda
• Idris
• Ocaml
• C++ STL
• ...

F#

• F# is an industrially supported functional first .Net language

– Belongs to eagerly evaluated ML family of languages

– Bears similarities with Ocaml

• Allows easy integration into existing .Net projects.

• F# is well designed (did you read the paper by Don Syme?)

– The Early History of F# (acm.org)

https://dl.acm.org/doi/pdf/10.1145/3386325

Some concepts touched upon in ITT8060
• functions and modules including higher order functions
• pipelines and composition
• lists, arrays, sequences
• pattern matching
• active patterns
• type inference
• recursive functions including tail recursion
• quotations
• record types, discriminated union types
• option types
• units of measure
• object programming
• asynchronous programming
• computation expressions
• type providers

Sample quote

• F# was the first language to introduce an async modality to allow
the localized reinterpretation of the existing control constructs of
the language. This meant that converting a piece of code from
synchronous to asynchronous involved nothing more than
wrapping async { ... } around the code and marking up the await
points (let! in F#). This directly influenced the async/await
mechanism added to C# 5.0 in 2012. the F# version was first
presented to the C# designers in 2007 and many discussions were
held in between. The C# async/await feature has been influential
on TypeScript, Kotlin, Python 3.5, Java, JavaScript and other
languages.

Don Syme, The Early History of F# (acm.org), page 75:50

https://dl.acm.org/doi/pdf/10.1145/3386325

Imperative programming style

IEnumerable<string> GetExpensiveProducts() {
 List<string> filteredInfos = new List<string();

foreach(Product product in Products) {
if(product.UnitPrice > 75.00M) {

filteredInfos.Add(String.Format("{0} - ${1}",
product.ProductName, product.UnitPrice));

}
}

 return filteredInfos;
}

Imperative programming style

IEnumerable<string> GetExpensiveProducts() {
 List<string> filteredInfos = new List<string();

foreach(Product product in Products) {
if(product.UnitPrice > 75.00M) {

filteredInfos.Add(String.Format("{0} - ${1}",
product.ProductName, product.UnitPrice));

}
}

 return filteredInfos;
}

State changing operations
Object oriented approach involves thinking about collections of
objects that pass messages

Declarative programming style

IEnumerable<string> GetExpensiveProducts() {
 return from product in Products

where product.UnitPrice > 75.0M
select String.Format("{0} - ${1}",

product.ProductName, product.UnitPrice);
}

Declarative programming style

IEnumerable<string> GetExpensiveProducts() {
 return from product in Products

where product.UnitPrice > 75.0M
select String.Format("{0} - ${1}",

product.ProductName, product.UnitPrice);
}

Declarative style focuses on what a solution is.
 Some advantages:

• Fast prototyping based on abstract concepts
• More advanced applications are within reach
• Supplement modelling and problem solving techniques
• Execute in parallel on multi-core platforms

Example: convenient parallelisation

var updated =
from m in monsters
let nm = m.PerformStep()
where nm.IsAlive select nm;

LINQ

Example: convenient parallelisation

var updated =
from m in monsters
let nm = m.PerformStep()
where nm.IsAlive select nm;

var updated =
from m in monsters.AsParallel()
let nm = m.PerformStep()
where nm.IsAlive select nm;

LINQ PLINQ

Course goals

• To give a generalised perspective to programming.

• To give an understanding how to think and program
functionally and develop new skills for
writing well structured code.

• To identify problems and domains that lend themselves to be
thought about in functional ways.

• Functional techniques are now commonplace in mainstream
programming languages.

Course goals cont.

• To show that real world business and scientific computing tasks
often have a natural functional structure.

• To show how to test functional programs.

• To give an overview of various applied techniques, such as
asynchronous and parallel programming in the functional
context.

Why I use F#?
// Wrote this code yesterday:
[<Literal>]
let eventUri=__SOURCE_DIRECTORY__ + "\\events24s.json"
type Event = JsonProvider<eventUri>
let event = Event.Load(eventUri)

let eventList = event.Data |> Array.toList |> List.map (fun j -> j.Schedule |> Array.toList) |> List.collect id

printfn "\"alg_kp\";\"lopp_kp\";\"isikukood\";\"eesn\";\"peren\";\"fk_ruum_id\";\"tunniplaan\";\"ainekood\";\"pohjus\";"
for r in eventList do

if (roomIds.Contains r.RoomId) && (r.Start > startTime) then
let re = RegularExpressions.Regex($"[A-Z][A-Z][A-Z][0-9][0-9][0-9][0-9]",RegexOptions.NonBacktracking)
let m = re.Match((r.Subject))
printfn "%A;%A;\"isikk\";\"eesn\";\"perekn\";%A;\"jah\";%A;\"pohjus\";"

(r.Start.ToString("yyyy-MM-dd HH:mm:ss"))
(r.End.ToString("yyyy-MM-dd HH:mm:ss"))
(roomMap (getRoomNo r.RoomId).RoomNo)
//((r.Content))
(if m.Success then

m.Value
else
"Tunniplaani sundmus")

else
()

Can anything exciting be done in F#?

• E.g. worlds fastest regular expression engine RE# (Ian)

– https://cs.taltech.ee/staff/iavara/regex

• The fastness argument is explained here:

– https://arxiv.org/abs/2407.20479

https://cs.taltech.ee/staff/iavara/regex
https://arxiv.org/abs/2407.20479

A bit of history

• The model of computation in functional programming is the
application of functions to arguments. No side effects

Introduction of λ –calculus around 1930 by Church and Kleene
when investigating function definition, function application,
recursion and computable functions. For example,

f(x) =x+2 is represented by λ x.x+2

Curry Howard isomorphism

• 1934 Haskell Curry observes that the types of the combinators
could be seen as axiom-schemes for intuitionistic implicational
logic.

• In 1958 he observes that a certain kind of proof system (Hilbert
style deduction system), coincides on some fragment to the typed
fragment of a standard model of computation known as
combinatory logic.

• In 1969 Howard observes that a proof system referred to as natural
deduction, can be directly interpreted in its intuitionistic version as
a typed variant of the model of computation known as lambda
calculus.

from Wikipedia

https://en.wikipedia.org/wiki/Typed_lambda_calculus
https://en.wikipedia.org/wiki/Axiom-scheme
https://en.wikipedia.org/wiki/Intuitionism
https://en.wikipedia.org/wiki/Proof_calculus
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/William_Alvin_Howard
https://en.wikipedia.org/wiki/Proof_calculus
https://en.wikipedia.org/wiki/Natural_deduction
https://en.wikipedia.org/wiki/Natural_deduction
https://en.wikipedia.org/wiki/Intuitionistic
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lambda_calculus

LISP

• Introduction of the type-less functional-like programming:
language LISP was developed by McCarthy in the late 1950s.

– Used for solving various AI problems

A bit of history cont.

• Introduction of the ”variable-free” programming language FP
(Backus 1977), by providing a rich collection of functionals
(combining forms for functions)

• Introduction of functional languages with a strong type system
like ML (by Milner) and Miranda (by Turner) in the 1970s.

Some background of the SML family

• Standard Meta Language (SML) was originally designed for
theorem proving Logic for Computable Functions (Edinburgh
LCF) Gordon, Milner, Wadsworth (1977)

• High quality compilers, e.g.

– Standard ML of New Jersey and

– Moscow ML

• based on a formal semantics Milner, Tofte, Harper, MacQueen
1990 & 1997

Some background of the SML family

• SML-like systems (SML, OCAML, F#,. ..) have now applications far away from its origins
– Compilers,
– Artificial Intelligence,
– Data analysis,
– Web-applications, Financial sector,
– iOS application development
– Android application development …

• F# is a .net language:
– The .NET Language Strategy | .NET Blog (microsoft.com)
– Declarative aspects are sneaking into more ”main stream“ languages

• Often used to teach high-level programming concepts

https://devblogs.microsoft.com/dotnet/the-net-language-strategy/

Quick F# motivation pitch by Ian

	Slide 1: ITT8060 Advanced Programming
	Slide 2: Welcome to Advanced Programming (in F#)!
	Slide 3: Textbooks
	Slide 4: Structure of the course
	Slide 5: Structure of the assessment
	Slide 6: Advanced Programming (in F#)
	Slide 7: You can all write programs!
	Slide 8: Why F# of many functional languages
	Slide 9: F#
	Slide 10: Some concepts touched upon in ITT8060
	Slide 11: Sample quote
	Slide 12: Imperative programming style
	Slide 13: Imperative programming style
	Slide 14: Declarative programming style
	Slide 15: Declarative programming style
	Slide 16: Example: convenient parallelisation
	Slide 17: Example: convenient parallelisation
	Slide 18: Course goals
	Slide 19: Course goals cont.
	Slide 20: Why I use F#?
	Slide 21: Can anything exciting be done in F#?
	Slide 22: A bit of history
	Slide 23: Curry Howard isomorphism
	Slide 24: LISP
	Slide 25: A bit of history cont.
	Slide 26: Some background of the SML family
	Slide 27: Some background of the SML family
	Slide 28: Quick F# motivation pitch by Ian

