ITT8060
Advanced Programming

In F#

Juhan Ernits, Hendrik Maarand, lan Erik Varatalu
Department of Software Science

Welcome to
Advanced Programming (in F#)!

* Course team:
— Juhan Ernits
— Hendrik Maarand
— lan Erik Varatalu

 Course web page

— https://fsharp.pages.taltech.ee

— Contact:
juhan.ernits@taltech.ee

— Online meetings: Teams team (with Taltech Uni-ID), Team ID for joining wir5fel:

https://teams.microsoft.com/l/team/19%3A189vuW9lKcwVkPySMS8d-
NsIpnRNBXvzuDVIRpIPYjLM1%40thread.tacv2/conversations?groupld=e5089253-ad39-4288-
b2al-c3ae878f9b30&tenantld=3efd4d88-9b88-4fc9-b6c0-c7ca50f1db57

Moodle (gradebook, links to videos, coursework feedback, ...), enrollment key 1tt8060-2024:
https://moodle.taltech.ee/enrol/instances.php?id=33950

https://fsharp.pages.taltech.ee/
mailto:juhan.ernits@ttu.ee
https://teams.microsoft.com/l/team/19%3A189vuW9lKcwVkPySM8d-NsIpnRNBXvzuDVIRplPYjLM1%40thread.tacv2/conversations?groupId=e5089253-ad39-4288-b2a1-c3ae878f9b30&tenantId=3efd4d88-9b88-4fc9-b6c0-c7ca50f1db57
https://teams.microsoft.com/l/team/19%3A189vuW9lKcwVkPySM8d-NsIpnRNBXvzuDVIRplPYjLM1%40thread.tacv2/conversations?groupId=e5089253-ad39-4288-b2a1-c3ae878f9b30&tenantId=3efd4d88-9b88-4fc9-b6c0-c7ca50f1db57
https://teams.microsoft.com/l/team/19%3A189vuW9lKcwVkPySM8d-NsIpnRNBXvzuDVIRplPYjLM1%40thread.tacv2/conversations?groupId=e5089253-ad39-4288-b2a1-c3ae878f9b30&tenantId=3efd4d88-9b88-4fc9-b6c0-c7ca50f1db57
https://moodle.taltech.ee/enrol/instances.php?id=33950

Textbooks

Main textbook

— Michael R. Hansen and Hans Rischel: Functional Programming using F# (paper copies in
libraries and online access from Taltech network:
Functional Programming Using F# (cambridge.org)
Additional textbook

— Tomas Petricek with Jon Skeet: Real-world functional programming with examples in F#
and C#
* 10 copies at Taltech: http://tallinn.ester.ee/record=b2780259~S1*eng
» Several copies available in Tartu

Additional textbook

— Don Syme: Expert F# 3.0 and Expert F# 4.0
* 5 copies at Taltech: http://tallinn.ester.ee/record=b2994544~S1*eng
» Several copies available in Tartu

More materials at https://fsharp.org/learn/

https://www.cambridge.org/core/books/functional-programming-using-f/BAB494BBE8AEBB13486F9A8362273D41
http://tallinn.ester.ee/record=b2780259~S1*eng
http://tallinn.ester.ee/record=b2994544~S1*eng
https://fsharp.org/learn/

Structure of the course

* The course runs for 16 weeks

* Lectures
— Room UO05-103, lectures get recorded
* Lab sessions

— Rooms
 Wed 12:00: ICT-122 (IVSM (in English), we will record broadcast sessions)
* Thu 8:00: ICT-401 (IAPM (in Estonian))

Structure of the assessment

* Coursework 45% of the final mark
— 9 courseworks, each counting for 5%. Courseworks are mapped to concepts.
— The coursework should be your own work.
— You should be able to explain your work to the lab assistant upon request.
— Your mark will be cancelled if you are not able to explain your own solutions to courseworks.
— There may be some bonus courseworks available.
 Aninclass test in week 9, 5% of the final mark. (October 30, 2024)

— You need to be there to get the 5%!
— An indication of your progress.

e Exam 50% of the final mark
— Written

— You need to get at least 50% of exam total in order to pass.
» (Strictly enforced)

e Exam times:

— Wednesday, Jan 8, 2025. 11:00 Tallinn, Tartu.
Wednesday, Jan 15, 2025. 11:00 Tallinn
Wednesday, Jan 22, 2025. 11:00 Tallinn

Advanced Programming
(in F#)

Q

You can all write programs!

 What is your first programming language?

Elixir
Lean
Clojure
C++

CH

C
Javascript
Python
PHP
Objective C
Erlang

Swift

F#

Haskell
OCaml
Scala

|dris
Whitespace
Prolog
TypeScript
Kotlin
Agda

Why F# of many functional languages

Kotlin
Scala
Elixir
Erlang

Common Lisp (Emacs)
— Many dialects, Clojure, Racket, Scheme, etc

Haskell
Agda
Idris

Ocaml
C++ STL

F

* F#is an industrially supported functional first .Net language
— Belongs to eagerly evaluated ML family of languages
— Bears similarities with Ocaml

* Allows easy integration into existing .Net projects.

* F#is well designed (did you read the paper by Don Syme?)
— The Early History of F# (acm.org)

https://dl.acm.org/doi/pdf/10.1145/3386325

Some concepts touched upon in ITT8060

functions and modules including higher order functions
pipelines and composition

lists, arrays, sequences

pattern matching

active patterns

type inference

recursive functions including tail recursion
guotations

record types, discriminated union types
option types

units of measure

object programming

asynchronous programming

computation expressions

type providers

Sample quote

* F# was the first language to introduce an async modality to allow
the localized reinterpretation of the existing control constructs of

the language.

This meant that converting a piece of code from

synchronous to asynchronous involved nothing more than
wrapping async{ ... } around the code and marking up the await

points (let! in
mechanism ac
presented to t

). This directly influenced the async/await
ded to C# 5.0 in 2012. the F# version was first
ne C# designers in 2007 and many discussions were

held in between. The C# async/await feature has been influential

on TypeScript,
languages.

Don Syme, The Earl

Kotlin, Python 3.5, Java, JavaScript and other

y History of F# (acm.org), page 75:50

https://dl.acm.org/doi/pdf/10.1145/3386325

Imperative programming style

IEnumerable<string> GetExpensiveProducts() {
List<string> filteredInfos = new List<string();
foreach(Product product in Products) {
if(product.UnitPrice > 75.00M) {
filteredInfos.Add(String.Format("{0} - ${1}",
product.ProductName, product.UnitPrice));

}
¥

return filteredInfos;

Imperative programming style

IEnumerable<string> GetExpensiveProducts() {
List<string> filteredInfos = new List<string();
foreach(Product product in Products) {
if(product.UnitPrice > 75.00M) {
filteredInfos.Add(String.Format("{0} - ${1}",
product.ProductName, product.UnitPrice));

}
¥

return filteredInfos;

State changing operations
Object oriented approach involves thinking about collections of
objects that pass messages

Declarative programming style

IEnumerable<string> GetExpensiveProducts() {
return from product in Products
where product.UnitPrice > 75.0M
select String.Format("{0} - ${1}",
product.ProductName, product.UnitPrice);

Declarative programming style

IEnumerable<string> GetExpensiveProducts() {
return from product in Products
where product.UnitPrice > 75.0M
select String.Format("{0} - ${1}",
product.ProductName, product.UnitPrice);

¥

Declarative style focuses on what a solution is.
Some advantages:
e Fast prototyping based on abstract concepts
 More advanced applications are within reach
e Supplement modelling and problem solving techniques
* Execute in parallel on multi-core platforms

Example: convenient parallelisation

var updated =
from m in monsters
let nm = m.PerformStep()
where nm.IsAlive select nm;

LINQ

Example: convenient parallelisation

var updated = var updated =
from m in monsters from m in monsters.AsParallel()
let nm = m.PerformStep() let nm = m.PerformStep()
where nm.IsAlive select nm; where nm.IsAlive select nm;

LINQ PLINQ

Course goals

To give a generalised perspective to programming.

To give an understanding how to think and program
functionally and develop new skills for
writing well structured code.

To identify problems and domains that lend themselves to be
thought about in functional ways.

Functional techniques are now commonplace in mainstream
programming languages.

Course goals cont.

* To show that real world business and scientific computing tasks
often have a natural functional structure.

* To show how to test functional programs.

* To give an overview of various applied techniques, such as

asynchronous and parallel programming in the functional
context.

Why | use F#?
// Wrote this code yesterday:

[<Literal>]

let eventUri=__SOURCE_DIRECTORY__ + "\\events24s.json"

type Event = JsonProvider<eventUri>

let event = Event.Load(eventUri)

let eventList = event.Data |> Array.tolList |> List.map (fun j -> j.Schedule |> Array.tolList) |> List.collect id

printfn "\"alg kp\";\"lopp kp\";\"isikukood\";\"eesn\";\"peren\";\"fk ruum_id\";\"tunniplaan\";\"ainekood\";\"pohjus\";"
for r in eventlList do
if (roomIds.Contains r.RoomId) && (r.Start > startTime) then
let re = RegularExpressions.Regex($"[A-Z][A-Z][A-Z][0-9][©-9][0©-9][0-9]",RegexOptions.NonBacktracking)
let m = re.Match((r.Subject))
printfn "%A;%A;\"isikk\";\"eesn\";\"perekn\";%A;\"jah\";%A;\"pohjus\";"
(r.Start.ToString("yyyy-MM-dd HH:mm:ss"))
(r.End.ToString("yyyy-MM-dd HH:mm:ss"))
(roomMap (getRoomNo r.RoomId).RoomNo)
//((r.Content))
(if m.Success then
m.Value
else
"Tunniplaani sundmus")
else

0

Can anything exciting be done in F

e E.g. worlds fastest regular expression engine RE# (lan)
— https://cs.taltech.ee/staff/iavara/regex

* The fastness argument is explained here:
— https://arxiv.org/abs/2407.20479

https://cs.taltech.ee/staff/iavara/regex
https://arxiv.org/abs/2407.20479

A bit of history

* The model of computation in functional programming is the
application of functions to arguments. No side effects

Introduction of A —calculus around 1930 by Church and Kleene
when investigating function definition, function application,
recursion and computable functions. For example,

f(x) =x+2 is represented by A x.x+2

Curry Howard isomorphism

e 1934 Haskell Curry observes that the types of the combinators
could be seen as axiom-schemes for intuitionistic implicational

logic.

* |n 1958 he observes that a certain kind of proof system (Hilbert
style deduction system), coincides on some fragment to the typed
fragment of a standard model of computation known as
combinatory logic.

* In 1969 Howard observes that a proof system referred to as natural
deduction, can be directly interpreted in its intuitionistic version as
a typed variant of the model of computation known as lambda
calculus.

from Wikipedia

https://en.wikipedia.org/wiki/Typed_lambda_calculus
https://en.wikipedia.org/wiki/Axiom-scheme
https://en.wikipedia.org/wiki/Intuitionism
https://en.wikipedia.org/wiki/Proof_calculus
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/William_Alvin_Howard
https://en.wikipedia.org/wiki/Proof_calculus
https://en.wikipedia.org/wiki/Natural_deduction
https://en.wikipedia.org/wiki/Natural_deduction
https://en.wikipedia.org/wiki/Intuitionistic
https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lambda_calculus

LISP

* Introduction of the type-less functional-like programming:
language LISP was developed by McCarthy in the late 1950s.

— Used for solving various Al problems

A bit of history cont.

* Introduction of the “variable-free” programming language FP
(Backus 1977), by providing a rich collection of functionals
(combining forms for functions)

* |Introduction of functional languages with a strong type system
like ML (by Milner) and Miranda (by Turner) in the 1970s.

Some background of the SML family

e Standard Meta Language (SML) was originally designed for
theorem proving Logic for Computable Functions (Edinburgh
LCF) Gordon, Milner, Wadsworth (1977)

* High quality compilers, e.g.
— Standard ML of New Jersey and
— Moscow ML

* based on a formal semantics Milner, Tofte, Harper, MacQueen
1990 & 1997

Some background of the SML family

 SML-like systems (SML, OCAML, F4,. ..) have now applications far away from its origins
— Compilers,
— Artificial Intelligence,
— Data analysis,
— Web-applications, Financial sector,
— i0S application development
— Android application development ...

 F#isa.netlanguage:
— The .NET Language Strategy | .NET Blog (microsoft.com)
— Declarative aspects are sneaking into more “main stream” languages

e Often used to teach high-level programming concepts

https://devblogs.microsoft.com/dotnet/the-net-language-strategy/

Quick F# motivation pitch by lan

	Slide 1: ITT8060 Advanced Programming
	Slide 2: Welcome to Advanced Programming (in F#)!
	Slide 3: Textbooks
	Slide 4: Structure of the course
	Slide 5: Structure of the assessment
	Slide 6: Advanced Programming (in F#)
	Slide 7: You can all write programs!
	Slide 8: Why F# of many functional languages
	Slide 9: F#
	Slide 10: Some concepts touched upon in ITT8060
	Slide 11: Sample quote
	Slide 12: Imperative programming style
	Slide 13: Imperative programming style
	Slide 14: Declarative programming style
	Slide 15: Declarative programming style
	Slide 16: Example: convenient parallelisation
	Slide 17: Example: convenient parallelisation
	Slide 18: Course goals
	Slide 19: Course goals cont.
	Slide 20: Why I use F#?
	Slide 21: Can anything exciting be done in F#?
	Slide 22: A bit of history
	Slide 23: Curry Howard isomorphism
	Slide 24: LISP
	Slide 25: A bit of history cont.
	Slide 26: Some background of the SML family
	Slide 27: Some background of the SML family
	Slide 28: Quick F# motivation pitch by Ian

