ITT8060: Advanced Programming (in F#)

Lecture 3: Lists, Functions, Basic Types and Tuples

Juhan Ernits, Hendrik Maarand and lan Erik Varatalu
based on slides by Michael R. Hansen

Department of Software Science, Tallinn University of Technology

20/09/2023

Overview

» Lists: values and constructors
» Recursions following the structure of lists

The purpose of this lecture is to give you an (as short as possible)
introduction to lists, so that you can solve a problem which can illustrate
some of F#s high-level features.

Overview

» Lists: values and constructors
» Recursions following the structure of lists

The purpose of this lecture is to give you an (as short as possible)
introduction to lists, so that you can solve a problem which can illustrate
some of F#s high-level features.

This part is not intended as a comprehensive presentation on lists, and we
will return to the topic again later.

Lists

A list is a finite sequence of elements having the same type:

[vi;. .. vi ([1is called the empty list)

Lists

A list is a finite sequence of elements having the same type:

[vi;. .. vi ([1is called the empty list)

[2;376]1;;
val it : int list = [2; 3; 6]

Lists

A list is a finite sequence of elements having the same type:

[vi;. .. vi ([1is called the empty list)

[2;376]1;;
val it : int 1list = [2; 3; 6]
[llall; llabll; llabcll; llll] ;,.

val it : string list = ["a"; "ab"; "abc"; ""]

Lists

A list is a finite sequence of elements having the same type:

[vi;. .. vi ([1is called the empty list)

[2;376]1;;
val it : int list = [2; 3; 6]

[llall. llabll; llabcll; llll];;

val it : string list = ["a"; "ab"; "abc"; ""]
[sin; cosl;;
val it (float—>float) 1list =

= [<fun:...>; <fun:...

Lists

A list is a finite sequence of elements having the same type:

[vi;. .. vi ([1is called the empty list)

[2;376]1;;

val it : int 1list = [2; 3; 6]

[llall; llabll; llabcll; llll] ;,.

val it : string list = ["a"; "ab"; "abc"; ""]

[sin; cosl;;
val it : (float->float) 1list = [<fun:...>; <fun:...>]

[(l,true); (3,true)l;;
val it : (int #* bool) 1list = [(1, true); (3, true)]

Lists

A list is a finite sequence of elements having the same type:

[vi;. .. vi ([1is called the empty list)

[2;376]1;;

val it : int 1list = [2; 3; 6]

[llall; llabll; llabcll; llll] ;,.

val it : string list = ["a"; "ab"; "abc"; ""]

[sin; cosl;;
val it : (float->float) 1list = [<fun:...>; <fun:...>]

[(l,true); (3,true)l;;
val it : (int #* bool) 1list = [(1, true); (3, true)]

[01; [11; [1;2115;
val it : int 1list 1list = [[]; [1]; [1; 2]]

List constructors: [] and : :

Lists are generated as follows:
> []isalist (empty list)
> if x is an element and xs is a list, (non-empty list)
thenx :: xsisalist

List constructors: [] and : :

Lists are generated as follows:

> []isalist (empty list)
> if x is an element and xs is a list, (non-empty list)
thenx :: xsisalist

: : associates to the right, i.e., xy::x2::xs means Xy::(X2::XS)

AN\

X2 XS

X1

Graph for x1: : x2: : x$

Trees for lists

A non-empty list [x1; X2; ... ; Xa], n > 1, consists of
» a head x; and
> a tail [xz; .. .; Xn]

Trees for lists

A non-empty list [x1; X2; ... ; Xa], n > 1, consists of

» a head x; and

Graph for [2;3;2]

2

Graph for [2]

[]

Recursion on lists — a simple example

n n
suml [X1;Xe; .. iXal =D _Xi=Xi+Xe+ - +Xo=X+ Y X
i=1 i=2

Recursion on lists — a simple example

n n
suml [X1;X2; ... ; Xn] :in:)ﬁ +Xo 4 4+ Xn =Xy +ZXI
i=1 i=2
Constructors are used in list patterns

let rec suml =
[L] -> 0
| x::xs —> x + suml xS;;

> val suml : int list -> int

function

Recursion on lists — a simple example

n n
suml [X1; X2; ... ;Xn] :fo:X1+X2+"'+Xn:X1+ZXi
i=1 i=2

Constructors are used in list patterns

let rec suml = function
[L] -> 0
| x::xs —> x + suml xS;;
> val suml : int list -> int
suml [1;2]
~ 1 + suml [2] (x— land xs — [2])
~ 1+ (2 + suml []) (x—2andxs— [])
~ 1+ (2 + 0) (the pattern [] matches the value [])
~ 1+ 2
~ 3

Recursion follows the structure of lists

Outline

» A further look at functions, including higher-order (or curried) functions
» A further look at basic types, including characters, equality and ordering
> A first look at polymorphism

» A further look at tuples and patterns

» A further look at lists and list recursion

Outline

» A further look at functions, including higher-order (or curried) functions
» A further look at basic types, including characters, equality and ordering
> A first look at polymorphism

» A further look at tuples and patterns

» A further look at lists and list recursion

Goal: By the end of the day you are acquainted with a major part of the F#
language.

Anonymous functions

Function expressions with general patterns, e.g.

function
| 2 -> 28
141619111 -> 30
\ -> 31

rr

/7
//
/7
//

equivalent to ‘‘fun x =
February
April, June, September,

All other months

match x with’

November

Anonymous functions

Function expressions with general patterns, e.g.

function // equivalent to ‘‘fun x = match x with’
| 2 -> 28 // February
4169111 -> 30 // April, June, September, November
\ -> 31 // All other months

i
Simple function expressions, e.g.

fun r -> System.Math.PI * r « r ;;
val it : float -> float = <fun:clo@I0-1>

it 2.0 ;;
val it : float = 12.56637061

Anonymous functions
Simple functions expressions with currying
funxy ---z =€

with the same meaning as

fun X — (funy = (--- (funz —e)---

Anonymous functions

Simple functions expressions with currying
funxy ---z =€
with the same meaning as

fun X = (funy = (- (funz—e)---))

For example: The function below takes an integer as argument and returns a
function of type int -> int as value:

fun x vy —> x + x*xy;;
val it : int -> 1int —-> int = <fun:clo@2-1>

Anonymous functions
Simple functions expressions with currying
funxy ---z =€
with the same meaning as

fun X = (funy = (- (funz—e)---))

For example: The function below takes an integer as argument and returns a
function of type int -> int as value:

fun x vy —> x + x*xy;;
val it : int -> 1int —-> int = <fun:clo@2-1>

let £ = it 2;;
val £ : (int —> int)

Anonymous functions

Simple functions expressions with currying
funxy ---z =€
with the same meaning as

fun X = (funy = (- (funz—e)---))

For example: The function below takes an integer as argument and returns a
function of type int -> int as value:

fun x vy —> x + x*xy;;

val it : int -> 1int —-> int = <fun:clo@2-1>
let £ = it 2;;

val f : (int —-> int)

£ 3;;

val it : int = 8

Anonymous functions

Simple functions expressions with currying
funxy ---z =€
with the same meaning as

funX = (funy = (- (funz —e€)--+))

For example: The function below takes an integer as argument and returns a
function of type int -> int as value:

fun x vy —> x + x*xy;;
val it : int -> 1int —-> int = <fun:clo@2-1>

let £ = it 2;;
val £ : (int —> 1int)
£ 357
val it : int = 8
Functions are first class citizens:
the argument and the value of a function may be functions

Function declarations
A simple function declaration:

letfx = e means let f = funx — e

For example: let circleArea r = System.Math.PI * r * r

Function declarations
A simple function declaration:

letfx = e means let f = funx — e

For example: let circleArea r = System.Math.PI * r * r

A declaration of a curried function
letfxy - ---z= e
has the same meaning as:

let f = funX = (funy — (- (funz —e)--+))

Function declarations
A simple function declaration:

letfx = e means let f = funx — e

For example: let circleArea r = System.Math.PI * r * r

A declaration of a curried function
letfxy - ---z= e
has the same meaning as:

let f = funx = (funy — (- (funz —e)--+))

For example:
let addMult x y = x + x*y;;
val addMult : int -> int -> int

let £ = addMult 2;;
val f : (int -> 1int)

f 3;;
val it : int = 8

An example

Suppose that we have a cube with side length s, containing a liquid with
density p. The weight of the liquid is then given by p - s°:

let weight ro s = ro * s *x 3.0;;
val weight : float —-> float -> float

An example

Suppose that we have a cube with side length s, containing a liquid with
density p. The weight of the liquid is then given by p - s°:

let weight ro s = ro * s *x 3.0;;
val weight : float —-> float -> float

We can partially apply the function to define functions for computing the
weight of a cube of either water or methanol:

let waterWeight = weight 1000.0;;
val waterWeight : (float -> float)

waterWeight 2.0;;
val it : float = 8000.0

An example

Suppose that we have a cube with side length s, containing a liquid with
density p. The weight of the liquid is then given by p - s°:

let weight ro s = ro * s *x 3.0;;
val weight : float —-> float -> float

We can partially apply the function to define functions for computing the
weight of a cube of either water or methanol:

let waterWeight = weight 1000.0;;
val waterWeight : (float -> float)

waterWeight 2.0;;
val it : float = 8000.0

let methanolWeight = weight 786.5 ;;
val methanolWeight : (float -> float)

methanolWeight 2.0;;
val it : float = 6292.0

Patterns

We have in previous examples exploited the pattern matching in function
expression:
function
| pat; — e

| pat, — en

Patterns

We have in previous examples exploited the pattern matching in function
expression:
function
| pat; — e

| pat, — en

A match expression has a similar pattern matching feature:
match ewith
| pat;r — e
| pat, — en

The value of e is computed and the expression e; corresponding to the first
matching pattern is chosen for further evaluation.

Example

Alternative declarations of the power function:

let rec power = function
| (,0) => 1.0
| (x,n) —-> x % power(x,n-1);;

Example

Alternative declarations of the power function:

let rec power = function
| (,0) => 1.0
| (x,n) —-> x % power(x,n-1);;

are

let rec power a = match a with
| (,0) —> 1.0
| (x,n) —> x * power (x,n-1);;

Example

Alternative declarations of the power function:

let rec power = function
| (,0) => 1.0
| (x,n) —-> x % power(x,n-1);;

are

let rec power a = match a with
| (,0) —> 1.0
| (x,n) —> x * power (x,n-1);;

and

let rec power(x,n) = match n with
| 0 -> 1.0
| n’ -> x % power(x,n’-1);;

Infix functions

The prefix version () of an infix operator & is a curried function.
For example:

(+) s
val it : (int —-> int —> int) = <fun:1t@1>

Infix functions

The prefix version () of an infix operator & is a curried function.
For example:

(+) 77

val it : (int —-> int -> 1int) = <fun:1t@I>
Arguments can be supplied one by one:

let plusThree = (+) 3;;

val plusThree : (int —-> int)

plusThree 5;;
val it : int = 8

Function composition: (f o g)(x) = f(g(x))

For example, if f(y) = y + 3 and g(x) = x%, then (fo g)(z) = z% + 3.

Function composition: (f o g)(x) = f(g(x))

For example, if f(y) = y + 3 and g(x) = x%, then (fo g)(z) = z% + 3.

The infix operator << in F# denotes function composition:

let £y = y+3;; // fly) = y+3

let g x = X*X;; // g(x) = x*x

let h = £ << g;; // h = (f o qg)

val h : int —-> int

h 4;; // h(4) = (£ o g) (4)

val it : int = 19

Function composition: (f o g)(x) = f(g(x))

For example, if f(y) = y + 3 and g(x) = x%, then (fo g)(z) = z% + 3.

The infix operator << in F# denotes function composition:

let £y = y+3;; // fly) = y+3

let g x = X*X;; // g(x) = x*x

let h = £ << g;; // h = (f o qg)

val h : int —-> int

h 4;; // h(4) = (£ o g) (4)

val it : int = 19

Using just anonymous functions:

((fun y —-> y+3) << (fun x -> xxx)) 4;;
val it : int = 19

Function composition: (f o g)(x) = f(g(x))

For example, if f(y) = y + 3 and g(x) = x%, then (fo g)(z) = z% + 3.

The infix operator << in F# denotes function composition:

let £y = y+3;; // fly) = y+3

let g x = X*X;; // g(x) = x*x

let h = £ << g;; // h = (f o qg)

val h : int —-> int

h 4;; // h(4) = (£ o g) (4)

val it : int = 19

Using just anonymous functions:

((fun y —-> y+3) << (fun x -> xxx)) 4;;
val it : int = 19

Type of (<<) ?

Basic Types: equality and ordering

The basic types: integers, floats, booleans, and strings type were covered
last week. Characters are considered on the next slide.
For these types (and many other) equality and ordering are defined.

In particular, there is a function:

>0 ifx>y

compare X y = 0 ifx=y
<0 ifx<y

Basic Types: equality and ordering

The basic types: integers, floats, booleans, and strings type were covered
last week. Characters are considered on the next slide.
For these types (and many other) equality and ordering are defined.

In particular, there is a function:

>0 ifx>y
compare X y = 0 ifx=y
<0 ifx<y

For example:
compare 7.4 2.0;;

val it : int =1

compare "abc" "def";;
val it : int = -3

compare 1 4;;
val it : int = -1

Pattern matching with guards

It is often useful to have when guards in patterns:

let ordText x y = match compare x y with
| £t when t > 0 -> "greater"
| 0 -> "equal"
| _ —-> "less";;

ordText "abc" "Abc";;
val it : string = "greater"

The first clause is only taken when t > 0 evaluates to true.

Polymorphism and comparison
The type of ordText
val ordText : 'a -> "a —-> string when ’"a : comparison

contains
> atype variable ’ a, and
> atype constraint’a : comparison

The type variable can be instantiated to any type provided comparison is
defined for that type. It is called a polymorphic type.

Polymorphism and comparison
The type of ordText
val ordText : 'a -> "a —-> string when ’"a : comparison

contains
> atype variable ’ a, and
> atype constraint’a : comparison

The type variable can be instantiated to any type provided comparison is
defined for that type. It is called a polymorphic type.

For example:

ordText true false;;

val it : string = "greater"
ordText (1,true) (1,false);;
val it : string = "greater"

ordText sin cos;;
/(’a —-> ’a)’ does not support the ’comparison’

Comparison is not defined for types involving functions.

Characters

Type name: char

Values "a’, * ', "\’ (escape sequence for ")

Characters

Type name: char
Values "a’, * 7, "\’ (escape s

Examples

let isLowerCaseVowel ch
System.Char.IsLowe
(ch="a’” || ch="e’

val isLowerCaseVowel

isLowerCaseVowel ’'1i';;
val it : bool = true

isLowerCaseVowel 'I';;
val it : bool = false

equence for ")

r ch &&
['] ch = "i’
char —-> bool

ch=’"0o’

Characters

Type name: char
Values "a’, * ', "\’ (escape sequence for ")

Examples

let isLowerCaseVowel ch =
System.Char.IsLower ch &&
(ch="a’ || ch=’'e’” || ch = "1’ || ch="0o’
val isLowerCaseVowel : char -> bool

isLowerCaseVowel ’'1i';;
val it : bool = true

isLowerCaseVowel 'I';;
val it : bool = false

The /’'th character in a string is achieved using the "dot”™-notation:

"abc".[0];;
val it : char = "a’

Overloaded Operators and Type inference

A squaring function on integers:

Declaration | Type \

let square x = X * X ‘ int -> int ‘ Default

Overloaded Operators and Type inference

A squaring function on integers:

Declaration | Type \
let square x = X * X ‘ int -> int ‘ Default

A squaring function on floats: square: float -> float

Declaration \

Overloaded Operators and Type inference

A squaring function on integers:

Declaration | Type \
let square x = X * X ‘ int -> int ‘ Default

A squaring function on floats: square: float -> float

Declaration \

let square(x:float) = x * x Type the argument

Overloaded Operators and Type inference

A squaring function on integers:

Declaration | Type \
let square x = X * X ‘ int -> int ‘ Default

A squaring function on floats: square: float -> float

Declaration \

let square(x:float) = x * x Type the argument
let square x:float = x * x Type the result

Overloaded Operators and Type inference

A squaring function on integers:

Declaration | Type \
let square x = X * X ‘ int -> int ‘ Default

A squaring function on floats: square: float -> float

Declaration \
let square(x:float) = x * x Type the argument
let square x:float = x *» x Type the result

let square x = x * x: float | Type expression for the result

Overloaded Operators and Type inference

A squaring function on integers:

Declaration | Type \
let square x = X * X ‘ int -> int ‘ Default

A squaring function on floats: square: float -> float

Declaration \
let square(x:float) = x * x Type the argument
let square x:float = x *» x Type the result

let square x = x * x: float | Type expression for the result
let square x = x:float * x Type a variable

Overloaded Operators and Type inference

A squaring function on integers:

Declaration | Type \
let square x = X * X ‘ int -> int ‘ Default

A squaring function on floats: square: float -> float

Declaration \

let square(x:float) = x * x Type the argument

let square x:float = x *» x Type the result

let square x = x * x: float | Type expression for the result
let square x = x:float * x Type a variable

You can mix these possibilities

Tuples

An ordered collection of nvalues (v1, vz, ..., v,) is called an n-tuple
Examples
(3, false);

2-tupl ir
val it = (3, false) : int bool tuples (pairs)

(1, 2, ("ab",true));

val it (1, 2, ("ab", true)) :°7? 3-tuples (triples)

Tuples

An ordered collection of nvalues (v1, vz, ..., v,) is called an n-tuple
Examples

(3, false);

val it = (3, false)

(1, 2, ("ab",true));)
1 it ’ ; - triples

val it = (1, 2, ("ab", true)) :? 3tup|es(p)

int * bool 2-tuples (pairs)

Equality defined componentwise, ordering lexicographically

(1, 2.0, true) = (2-1,

= 2.0«1.0, 1<2);;
val it = true : bool

Tuples

An ordered collection of nvalues (v1, vz, ..., v,) is called an n-tuple
Examples
(3, false);

val it = (3, false) : int = bool 2-tuples (pairs)

(1, 2, ("ab",true));
val it = (1, 2, ("ab", true)) :°?

3-tuples (triples)

Equality defined componentwise, ordering lexicographically

(1, 2.0, true) = (2-1, 2.0%x1.0, 1<2);;
val it = true : bool

compare (1, 2.0, true) (2-1, 3.0, false);;
val it : int = -1
provided = is defined on components

Tuple patterns

Extract components of tuples

let ((x,_),(,y,2)) = ((1,true), ("a","b",false));;
val x : int =1
val y : string = "b"

Pattern matching yields bindings

Tuple patterns

Extract components of tuples

let ((x,_),(,y,2)) = ((1,true), ("a","b",false));;
val x : int =1
val y : string = "b"

Pattern matching yields bindings

Restriction
let (x,x) = (1,1);;

ERROR ... ’x’ is bound twice in this pattern

Local declarations

Examples

let g x =
let a = 6
let £y =
x + £ x;;

val g : int -> int

y + a

g 1;i;
val it : int = 8

Note: a and f are not visible outside of g

Declaration of types and exceptions

Example: Solve ax? + bx +¢ =0

type Equation = float » float * float
type Solution = float x float
exception Solve; (# declares an exception x)

Declaration of types and exceptions

Example: Solve ax? + bx +¢ =0

type Equation = float » float * float
type Solution = float x float
exception Solve; (# declares an exception x)

let solve(a,b,c) =
if bxb-4.0%xa*xc < 0.0 || a = 0.0 then raise Solve
else ((-b + sqgrt (bx*b-4.0%ax*c))/(2.0=*a),
(-b - sgrt (bxb-4.0%axc))/(2.0%a));;
val solve : float » float * float —-> float » float

The type of the function solve is (the expansion of)

Equation —-> Solution

d is declared once and used 3 times readability, efficiency

Solution using local declarations

let solve(a,b,c)
let d = bxb-4.0xaxc
if d < 0.0 || a = 0.0 then raise Solve else
((-b + sqgrt d)/(2.0%xa), (-b — sqrt d)/(2.0%a));;

Solution using local declarations

let solve(a,b,c)
let d = bxb-4.0xaxc
if d < 0.0 || a = 0.0 then raise Solve else
((-b + sqgrt d)/(2.0%xa), (-b — sqrt d)/(2.0%a));;

let solve(a,b,c) =

let sqgrtD =
let d = bxb-4.0xaxc
if d < 0.0 || a = 0.0 then raise Solve

else sqgrt d
((-b + sqrtD)/(2.0%a), (-b — sqgrtD)/(2.0%*a));;

Indentation matters

Example: Rational Numbers

Consider the following signature, specifying operations and their types:

Specification Comment

type gnum = int * int rational numbers

exception QDiv division by zero

mkQ: int *int — gnum construction of rational numbers

+...gnum * gnum — gnum | addition of rational numbers
.-..gnum * gnum — gnum | subtraction of rational numbers
.o gnum * gnum — gnum | multiplication of rational numbers
J.:gnum * gnum — gnum | division of rational numbers

.=.. gnum * gnum — bool equality of rational numbers

toString: gnum — string String representation
of rational numbers

Intended use

a1
Q2
a3
Qqa

I
win

Intended use

let g1 = mkQ(2,3);; g = %

let g2 = mkQ(12, -27);; p=-2- 3

let 3 = mkQ(-1, 4) .*. q2 .-. q1;; B=—13 R—qr =1
letg4 =q1.-. g2 ./. g3;; q4:q17q2/q3:§7%4/%5
toString q4;;

val it : string = "-2/15" =_2

3

Operators are infix with usual precedences

Intended use

let g1 = mkQ(2,3);; g =2

let g2 = mkQ(12, -27);; p=-2- 3

let 3 = mkQ(-1, 4) .*. q2 .-. q1;; B=—13 R—qr =1
letg4 =q1.-. g2 ./. g3;; q4:q17q2/q3:§7%4/%5
toString q4;;

val it : string = "-2/15" =_2

3

Operators are infix with usual precedences

Note: Without using infix:

let g3 = (.—.) ((.*.) (mkQ(-1,4)) g2) ql;;

Representation: (a, b), b > 0 and gcd(a, b) = 1

Example — 22 is represented by (—4,9)

Representation: (a, b), b > 0 and gcd(a, b) = 1

Example — 22 is represented by (—4,9)

Greatest common divisor (Euclid’s algorithm)

let rec gcd = function
| (0O,n) -> n - gcd(12,27);;
| (m,n) -> gcd(n % m,m);; val it : 1int
val ged : 1int * int —-> int

3

Representation: (a, b), b > 0 and gcd(a, b) = 1

Example — 22 is represented by (—4,9)

Greatest common divisor (Euclid’s algorithm)

let rec gcd = function

| (0O,n) -> n - gcd(12,27);;

| (m,n) -> gcd(n % m,m);; val it : int = 3
val ged : 1int * int —-> int

Function to cancel common divisors:

let canc(p,q)
let sign = if pxg < 0 then -1 else 1
let ap = abs p
let ag abs g
let d gcd (ap, aq)
(sign » (ap / d), aq / d);;

canc(12,-27);;
val it : int * int = (-4, 9)

Program for rational numbers

Declaration of the constructor:

exception QDiv;;

let mkQ = function
| (_,0) -> raise QDiv
| pr -> canc pr;;

Program for rational numbers
Declaration of the constructor:

exception QDiv;;

let mkQ = function
| (_,0) -> raise QDiv
| pr -> canc prj;

Rules of arithmetic:

a c _ ad+bc
b+d o bd
a.,c - ac

b d ~ bd
a__ ¢ _ —
2=g = ad=bc

Tl Tl
Qlo
Qlo

Program for rational numbers

Declaration of the constructor:

exception QDiv;;

let mkQ = function
| (_,0) -> raise QDiv
| pr -> canc prj;

Rules of arithmetic:

§+g _ ad+bc a_ ¢ _ ad—bc

b d o bd b d bd

a, c — ac asjc - a.,d

b'd — bd 5/a = b Whenc#0
a__c¢ _ —

p=4qg = ad=bc

Program corresponds direly to these rules

let (.+.) (a,b) (c,d) = canc(axd + bx*c, bxd);;
let (.-.) (a,b) (c,d) = canc(axd — bxc, bxd);;
let (.*.) (a,b) (c,d) = canc(axc, bxd);;

let (./.) (a,b) (c,d) = (a,b) .*. mkQ(d,c);;
let (.=.) (a,b) (c,d) = (a,b) = (c,d);;

Note: Functions must preserve the invariant of the representation

Pattern matching and recursion

Consider unzip that maps a list of pairs to a pair of lists:

unzip ([(X0, Yo0) 7 (X1, Y1) 7 ... 7 (Xn—1,¥n—1)]
= ([XoiX1; - i Xn—11, [YoiY1i -+ i¥Yn=11)

with the declaration:

let rec unzip = function

I [> ([1,[D)
| (x,y)::rest —> let (xs,ys) = unzip rest
(X::xX8,Y::Y8);;

unzip [(1,"a"); (2,"b")1;;
val it : int 1list + string list = ([1; 2], ["a";

"H "])

Pattern matching and recursion

Consider unzip that maps a list of pairs to a pair of lists:

unzip ([(X0, Yo0) 7 (X1, Y1) 7 ... 7 (Xn—1,¥n—1)]
= ([XoiX1; - i Xn—11, [YoiY1i -+ i¥Yn=11)

with the declaration:

let rec unzip = function

I [> ([1,[D)
| (x,y)::rest —> let (xs,ys) = unzip rest
(X::xX8,Y::Y8);;

unzip [(1,"a"); (2,"b")1;;
val it : int 1list + string list = ([1; 2], ["a";
Notice
» pattern matching on result of recursive call
» unzip is polymorphic. Type?
» unzip is available in the List library.

"H "])

Summary

You are acquainted with a major part of the F# language.

v

Higher-order (or curried) functions
» Basic types, equality and ordering
» Polymorphism

» Tuples

» Patterns

> A look at lists and list recursion

