ITT8060: Advanced Programming (in F#) Lecture 3: Lists, Functions, Basic Types and Tuples

Juhan Ernits, Hendrik Maarand and Ian Erik Varatalu based on slides by Michael R. Hansen

Department of Software Science, Tallinn University of Technology

20/09/2023

(日)

Overview

- Lists: values and constructors
- Recursions following the structure of lists

The purpose of this lecture is to give you an (as short as possible) introduction to lists, so that you can solve a problem which can illustrate some of F#'s high-level features.

This part is *not* intended as a comprehensive presentation on lists, and we will return to the topic again later.

(ロ) (同) (三) (三) (三) (○) (○)

Overview

- Lists: values and constructors
- Recursions following the structure of lists

The purpose of this lecture is to give you an (as short as possible) introduction to lists, so that you can solve a problem which can illustrate some of F#'s high-level features.

This part is *not* intended as a comprehensive presentation on lists, and we will return to the topic again later.

(ロ) (同) (三) (三) (三) (○) (○)

A list is a finite sequence of elements having the same type:

```
[2;3;6];;
val it : int list = [2; 3; 6]
["a"; "ab"; "abc"; ""];;
val it : string list = ["a"; "ab"; "abc"; ""]
[sin; cos];;
val it : (float->float) list = [<fun:...>; <fun:...>]
[(1,true); (3,true)];;
val it : (int * bool) list = [(1, true); (3, true)]
[[]; [1]; [1;2]];;
val it : int list list = [[]; [1]; [1; 2]]
```

A list is a finite sequence of elements having the same type:

```
[2;3;6];;
val it : int list = [2; 3; 6]
["a"; "ab"; "abc"; ""];;
val it : string list = ["a"; "ab"; "abc"; ""]
[sin; cos];;
val it : (float->float) list = [<fun:...>; <fun:...>]
[(1,true); (3,true)];;
val it : (int * bool) list = [(1, true); (3, true)]
[[]; [1]; [1;2]];;
val it : int list list = [[]; [1]; [1; 2]]
```

Lists

A list is a finite sequence of elements having the same type:

```
[2;3;6];;
val it : int list = [2; 3; 6]
["a"; "ab"; "abc"; ""];;
val it : string list = ["a"; "ab"; "abc"; ""]
[sin; cos];;
val it : (float->float) list = [<fun:...>; <fun:...>]
[(1,true); (3,true)];;
val it : (int * bool) list = [(1, true); (3, true)]
[[]; [1]; [1;2]];;
val it : int list list = [[]; [1]; [1; 2]]
```

Lists

A list is a finite sequence of elements having the same type:

 $[v_1; \ldots; v_n]$ ([] is called the empty list)

```
[2;3;6];;
val it : int list = [2; 3; 6]
["a"; "ab"; "abc"; ""];;
val it : string list = ["a"; "ab"; "abc"; ""]
[sin; cos];;
val it : (float->float) list = [<fun:...>; <fun:...>]
[(1,true); (3,true)];;
val it : (int * bool) list = [(1, true); (3, true)]
[[]; [1]; [1;2]];;
val it : int list list = [[]; [1]; [1; 2]]
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A list is a finite sequence of elements having the same type:

 $[v_1; \ldots; v_n]$ ([] is called the empty list)

```
[2;3;6];;
val it : int list = [2; 3; 6]
["a"; "ab"; "abc"; ""];;
val it : string list = ["a"; "ab"; "abc"; ""]
[sin; cos];;
val it : (float->float) list = [<fun:...>; <fun:...>]
[(1,true); (3,true)];;
val it : (int * bool) list = [(1, true); (3, true)]
[[]; [1]; [1;2]];;
val it : int list list = [[]; [1]; [1; 2]]
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A list is a finite sequence of elements having the same type:

```
[2;3;6];;
val it : int list = [2; 3; 6]
["a"; "ab"; "abc"; ""];;
val it : string list = ["a"; "ab"; "abc"; ""]
[sin; cos];;
val it : (float->float) list = [<fun:...>; <fun:...>]
[(1,true); (3,true)];;
val it : (int * bool) list = [(1, true); (3, true)]
[[]; [1]; [1;2]];;
val it : int list list = [[]; [1]; [1; 2]]
```

List constructors: [] and ::

Lists are generated as follows:

- [] is a list
- if x is an element and xs is a list, then x :: xs is a list

(empty list) (non-empty list)

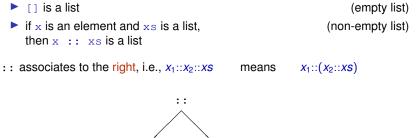
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

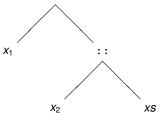
:: X₁ :: X₂ XS

Graph for $x_1 : : x_2 : : x_3$

List constructors: [] and ::

Lists are generated as follows:



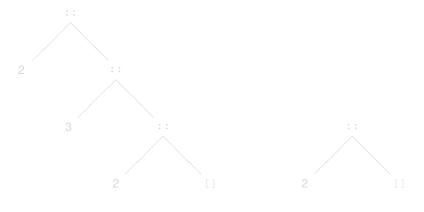


Graph for $x_1 :: x_2 :: x_5$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Trees for lists

- A non-empty list $[x_1; x_2; ...; x_n]$, $n \ge 1$, consists of
 - \blacktriangleright a *head* x_1 and
 - $\blacktriangleright \text{ a tail } [x_2; \ldots; x_n]$



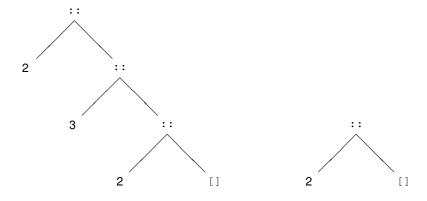
Graph for [2;3;2]

Graph for [2]

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Trees for lists

- A non-empty list $[x_1; x_2; ...; x_n]$, $n \ge 1$, consists of
 - ▶ a *head x*₁ and
 - $\blacktriangleright \text{ a tail } [x_2; \ldots; x_n]$



Graph for [2;3;2]

Graph for [2]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Recursion on lists – a simple example

suml
$$[X_1; X_2; ...; X_n] = \sum_{i=1}^n X_i = X_1 + X_2 + \dots + X_n = X_1 + \sum_{i=2}^n X_i$$

Constructors are used in list patterns

```
let rec suml = function
    [] -> 0
    [ x::xs -> x + suml xs;;
> val suml : int list -> int
```

```
suml [1;2]
\Rightarrow 1 + suml [2] (x \mapsto 1 \text{ and } xs \mapsto [2])
\Rightarrow 1 + (2 + suml []) (x \mapsto 2 \text{ and } xs \mapsto [])
\Rightarrow 1 + (2 + 0) (\text{the pattern } [] \text{ matches the value } [])
\Rightarrow 1 + 2
\Rightarrow 3
```

Recursion follows the structure of lists

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Recursion on lists – a simple example

suml
$$[x_1; x_2; ...; x_n] = \sum_{i=1}^n x_i = x_1 + x_2 + \dots + x_n = x_1 + \sum_{i=2}^n x_i$$

```
Constructors are used in list patterns
```

```
let rec suml = function
    [] -> 0
    | x::xs -> x + suml xs;;
> val suml : int list -> int
```

```
suml [1;2]
\Rightarrow 1 + suml [2] (x \mapsto 1 \text{ and } xs \mapsto [2])
\Rightarrow 1 + (2 + suml []) (x \mapsto 2 \text{ and } xs \mapsto [])
\Rightarrow 1 + (2 + 0) (\text{the pattern } [] \text{ matches the value } [])
\Rightarrow 1 + 2
\Rightarrow 3
```

Recursion follows the structure of lists

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Recursion on lists – a simple example

suml
$$[x_1; x_2; ...; x_n] = \sum_{i=1}^n x_i = x_1 + x_2 + \dots + x_n = x_1 + \sum_{i=2}^n x_i$$

Constructors are used in list patterns

let rec suml = function
 | [] -> 0
 | x::xs -> x + suml xs;;
> val suml : int list -> int

```
suml [1;2]
\rightarrow 1 + suml [2] \qquad (x \mapsto 1 \text{ and } xs \mapsto [2])
\rightarrow 1 + (2 + suml []) \qquad (x \mapsto 2 \text{ and } xs \mapsto [])
\rightarrow 1 + (2 + 0) \qquad (\text{the pattern } [] \text{ matches the value } [])
\rightarrow 1 + 2
\rightarrow 3
```

Recursion follows the structure of lists

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

- A further look at functions, including higher-order (or curried) functions
- A further look at basic types, including characters, equality and ordering
- A first look at polymorphism
- A further look at tuples and patterns
- A further look at lists and list recursion

Goal: By the end of the day you are acquainted with a major part of the F# language.

Outline

- A further look at functions, including higher-order (or curried) functions
- A further look at basic types, including characters, equality and ordering
- A first look at polymorphism
- A further look at tuples and patterns
- A further look at lists and list recursion

Goal: By the end of the day you are acquainted with a major part of the F# language.

Function expressions with general patterns, e.g.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Simple function expressions, e.g.

```
fun r -> System.Math.PI * r * r ;;
val it : float -> float = <fun:clo@10-1>
it 2.0 ;;
val it : float = 12.56637061
```

Function expressions with general patterns, e.g.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Simple function expressions, e.g.

```
fun r -> System.Math.PI * r * r ;;
val it : float -> float = <fun:clo@10-1>
it 2.0 ;;
val it : float = 12.56637061
```

Simple functions expressions with currying

fun $x y \cdots z \rightarrow e$

with the same meaning as

```
fun X \to (\text{fun } Y \to (\cdots (\text{fun } Z \to e) \cdots))
```

For example: The function below takes an integer as argument and returns a function of type int -> int as value:

```
fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>
let f = it 2;;
val f : ( int -> int)
f 3;;
val it : int = 8
```

Functions are first class citizens: the argument and the value of a function may be functions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Simple functions expressions with currying

fun $x y \cdots z \rightarrow e$

with the same meaning as

```
fun X \to (\text{fun } Y \to (\cdots (\text{fun } Z \to e) \cdots))
```

For example: The function below takes an integer as argument and returns a function of type int -> int as value:

```
fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>
let f = it 2;;
val f : ( int -> int)
f 3;;
val it : int = 8
Eunctions are first class citizens:
```

the argument and the value of a function may be functions

Simple functions expressions with currying

fun $x y \cdots z \rightarrow e$

with the same meaning as

```
fun X \to (\text{fun } Y \to (\cdots (\text{fun } Z \to e) \cdots))
```

For example: The function below takes an integer as argument and returns a function of type int -> int as value:

```
fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>
let f = it 2;;
val f : ( int -> int)
f 3;;
val it : int = 8
```

Functions are first class citizens: the argument and the value of a function may be functions

Simple functions expressions with currying

fun $x y \cdots z \rightarrow e$

with the same meaning as

```
fun X \to (\text{fun } Y \to (\cdots (\text{fun } Z \to e) \cdots))
```

For example: The function below takes an integer as argument and returns a function of type int -> int as value:

```
fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>
let f = it 2;;
val f : ( int -> int)
f 3;;
val it : int = 8
```

Functions are first class citizens: the argument and the value of a function may be functions

Simple functions expressions with *currying*

fun $x y \cdots z \rightarrow e$

with the same meaning as

```
fun X \to (\text{fun } Y \to (\cdots (\text{fun } Z \to e) \cdots))
```

For example: The function below takes an integer as argument and returns a function of type int -> int as value:

```
fun x y -> x + x*y;;
val it : int -> int -> int = <fun:clo@2-1>
let f = it 2;;
val f : ( int -> int)
f 3;;
val it : int = 8
```

Functions are first class citizens: the argument and the value of a function may be functions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Function declarations

A simple function declaration:

let f x = e means let $f = fun x \rightarrow e$

For example: let circleArea r = System.Math.PI * r * r

A declaration of a curried function

let $f x y \cdots z = e$

has the same meaning as:

let $f = \operatorname{fun} X \to (\operatorname{fun} Y \to (\cdots (\operatorname{fun} Z \to e) \cdots))$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For example:

```
let addMult x y = x + x*y;;
val addMult : int -> int -> in
let f = addMult 2;;
val f : (int -> int)
f 3;;
val it : int = 8
```

Function declarations

A simple function declaration:

let f x = e means let $f = fun x \rightarrow e$

For example: let circleArea r = System.Math.PI * r * r

A declaration of a curried function

let $f x y \cdots z = e$

has the same meaning as:

let $f = \operatorname{fun} X \to (\operatorname{fun} Y \to (\cdots (\operatorname{fun} Z \to e) \cdots))$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For example:

```
let addMult x y = x + x*y;;
val addMult : int -> int -> int
let f = addMult 2;;
val f : (int -> int)
f 3;;
val it : int = 8
```

Function declarations

A simple function declaration:

let f x = e means let $f = fun x \rightarrow e$

For example: let circleArea r = System.Math.PI * r * r

A declaration of a curried function

let $f x y \cdots z = e$

has the same meaning as:

let
$$f = \operatorname{fun} X \to (\operatorname{fun} Y \to (\cdots (\operatorname{fun} Z \to e) \cdots))$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

For example:

```
let addMult x y = x + x*y;;
val addMult : int -> int -> int
let f = addMult 2;;
val f : (int -> int)
f 3;;
val it : int = 8
```

An example

Suppose that we have a cube with side length *s*, containing a liquid with density ρ . The weight of the liquid is then given by $\rho \cdot s^3$:

```
let weight ro s = ro * s ** 3.0;;
val weight : float -> float -> float
```

We can *partially apply* the function to define functions for computing the weight of a cube of either water or methanol:

```
let waterWeight = weight 1000.0;;
val waterWeight : (float -> float)
waterWeight 2.0;;
val it : float = 8000.0
let methanolWeight = weight 786.5 ;;
val methanolWeight : (float -> float)
methanolWeight 2.0;;
val it : float = 6292.0
```

An example

Suppose that we have a cube with side length *s*, containing a liquid with density ρ . The weight of the liquid is then given by $\rho \cdot s^3$:

```
let weight ro s = ro * s ** 3.0;;
val weight : float -> float -> float
```

We can *partially apply* the function to define functions for computing the weight of a cube of either water or methanol:

(ロ) (同) (三) (三) (三) (○) (○)

```
let waterWeight = weight 1000.0;;
val waterWeight : (float -> float)
waterWeight 2.0;;
val it : float = 8000.0
let methanolWeight = weight 786.5 ;;
val methanolWeight : (float -> float)
methanolWeight 2.0;;
val it : float = 6292.0
```

An example

Suppose that we have a cube with side length *s*, containing a liquid with density ρ . The weight of the liquid is then given by $\rho \cdot s^3$:

```
let weight ro s = ro * s ** 3.0;;
val weight : float -> float -> float
```

We can *partially apply* the function to define functions for computing the weight of a cube of either water or methanol:

(ロ) (同) (三) (三) (三) (○) (○)

```
let waterWeight = weight 1000.0;;
val waterWeight : (float -> float)
waterWeight 2.0;;
val it : float = 8000.0
let methanolWeight = weight 786.5 ;;
val methanolWeight : (float -> float)
methanolWeight 2.0;;
val it : float = 6292.0
```

Patterns

We have in previous examples exploited the pattern matching in function expression:

A match expression has a similar pattern matching feature:

```
\begin{array}{ccc} \text{match } e \text{ with} \\ | pat_1 \rightarrow e_1 \\ \vdots \\ | pat_n \rightarrow e_n \end{array}
```

The value of e is computed and the expression e_i corresponding to the first matching pattern is chosen for further evaluation.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Patterns

We have in previous examples exploited the pattern matching in function expression:

A match expression has a similar pattern matching feature:

```
match e with

| pat_1 \rightarrow e_1

\vdots

| pat_n \rightarrow e_n
```

The value of e is computed and the expression e_i corresponding to the first matching pattern is chosen for further evaluation.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

Alternative declarations of the power function:

```
let rec power = function
 |(.,0)| \rightarrow 1.0
 | (x,n) -> x * power(x,n-1);;
```

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Example

Alternative declarations of the power function:

Example

Alternative declarations of the power function:

```
| 0 -> 1.0
| n' -> x * power(x,n'-1);;
```

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Infix functions

The prefix version (\oplus) of an infix operator \oplus is a curried function. For example:

```
(+);;
val it : (int -> int -> int) = <fun:it@1>
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Arguments can be supplied one by one:

```
let plusThree = (+) 3;;
val plusThree : (int -> int)
plusThree 5;;
val it : int = 8
```

Infix functions

The prefix version (\oplus) of an infix operator \oplus is a curried function. For example:

```
(+);;
val it : (int -> int -> int) = <fun:it@1>
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Arguments can be supplied one by one:

```
let plusThree = (+) 3;;
val plusThree : (int -> int)
plusThree 5;;
val it : int = 8
```

For example, if f(y) = y + 3 and $g(x) = x^2$, then $(f \circ g)(z) = z^2 + 3$.

The infix operator << in F# denotes function composition:

Using just anonymous functions:

((fun y -> y+3) << (fun x -> x*x)) 4;; val it : int = 19

Type of (<<) ?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

For example, if f(y) = y + 3 and $g(x) = x^2$, then $(f \circ g)(z) = z^2 + 3$. The infix operator << in F# denotes function composition:

Using just anonymous functions:

((fun y -> y+3) << (fun x -> x*x)) 4;; val it : int = 19

Type of (<<) ?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For example, if f(y) = y + 3 and $g(x) = x^2$, then $(f \circ g)(z) = z^2 + 3$. The infix operator << in F# denotes function composition:

Using just anonymous functions:

((fun y -> y+3) << (fun x -> x*x)) 4;; val it : int = 19

Type of (<<) ?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

For example, if f(y) = y + 3 and $g(x) = x^2$, then $(f \circ g)(z) = z^2 + 3$. The infix operator << in F# denotes function composition:

Using just anonymous functions:

((fun y -> y+3) << (fun x -> x*x)) 4;; val it : int = 19

Type of (<<) ?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Basic Types: equality and ordering

The basic types: integers, floats, booleans, and strings type were covered last week. Characters are considered on the next slide.

For these types (and many other) equality and ordering are defined.

In particular, there is a function:

compare
$$x y = \begin{cases} > 0 & \text{if } x > y \\ 0 & \text{if } x = y \\ < 0 & \text{if } x < y \end{cases}$$

For example:

```
compare 7.4 2.0;;
val it : int = 1
compare "abc" "def";;
val it : int = -3
compare 1 4;;
val it : int = -1
```

Basic Types: equality and ordering

The basic types: integers, floats, booleans, and strings type were covered last week. Characters are considered on the next slide.

For these types (and many other) equality and ordering are defined.

In particular, there is a function:

compare
$$x y = \begin{cases} > 0 & \text{if } x > y \\ 0 & \text{if } x = y \\ < 0 & \text{if } x < y \end{cases}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

For example:

```
compare 7.4 2.0;;
val it : int = 1
compare "abc" "def";;
val it : int = -3
compare 1 4;;
val it : int = -1
```

It is often useful to have when guards in patterns:

The first clause is only taken when t > 0 evaluates to true.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Polymorphism and comparison

The type of ordText

val ordText : 'a -> 'a -> string when 'a : comparison

contains

- a type variable ' a, and
- a type constraint 'a : comparison

The type variable can be instantiated to any type provided comparison is defined for that type. It is called a polymorphic type.

```
For example:
    ordText true false;;
    val it : string = "greater"
    ordText (1,true) (1,false);;
    val it : string = "greater"
    ordText sin cos;;
    ... '('a -> 'a)' does not support the 'comparison' ...
    Comparison is not defined for types involving functions.
```

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Polymorphism and comparison

The type of ordText

val ordText : 'a -> 'a -> string when 'a : comparison

contains

- a type variable ' a, and
- a type constraint 'a : comparison

The type variable can be instantiated to any type provided comparison is defined for that type. It is called a polymorphic type.

For example:

```
ordText true false;;
val it : string = "greater"
ordText (1,true) (1,false);;
val it : string = "greater"
ordText sin cos;;
... '('a -> 'a)' does not support the 'comparison' ...
Comparison is not defined for types involving functions.
```

(日)

Characters

Type name: char

```
Values ' a', ' ', ' \' (escape sequence for ')
```

Examples

```
let isLowerCaseVowel ch =
   System.Char.IsLower ch &&
   (ch='a' || ch='e' || ch = 'i' || ch='o' || ch = 'u');;
val isLowerCaseVowel : char -> bool
isLowerCaseVowel 'i';;
val it : bool = true
isLowerCaseVowel 'I';;
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

```
val it : bool = false
```

The i'th character in a string is achieved using the "dot"-notation:

```
"abc".[0];;
val it : char = 'a'
```

Characters

Type name: char

```
Values ' a', ' ', ' \' (escape sequence for ')
```

Examples

```
let isLowerCaseVowel ch =
    System.Char.IsLower ch &&
    (ch='a' || ch='e' || ch = 'i' || ch='o' || ch = 'u');;
val isLowerCaseVowel : char -> bool
isLowerCaseVowel 'i';;
val it : bool = true
isLowerCaseVowel 'I';;
val it : bool = false
```

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The *i*'th character in a string is achieved using the "dot"-notation:

```
"abc".[0];;
val it : char = 'a'
```

Characters

Type name: char

```
Values ' a', ' ', ' \' (escape sequence for ')
```

Examples

```
let isLowerCaseVowel ch =
    System.Char.IsLower ch &&
    (ch='a' || ch='e' || ch = 'i' || ch='o' || ch = 'u');;
val isLowerCaseVowel : char -> bool
isLowerCaseVowel 'i';;
val it : bool = true
isLowerCaseVowel 'I';;
val it : bool = false
```

The *i*'th character in a string is achieved using the "dot"-notation:

```
"abc".[0];;
val it : char = 'a'
```

A squaring function on integers:

Declaration	Туре		
let square $x = x * x$	int ->	int	Default
A squaring function on floats:	square:		
Declaration			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A squaring function on integers:

Declaration	Туре		
let square x = x * x	int ->	int	Default
A squaring function on floats:	square:	floa	at -> float
Declaration			
<pre>let square(x:float) =</pre>	х * х		e the argument
let square x:float =	x * x		
let square $x = x + x$:	float		
let square x = x:floa	t * x		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A squaring function on integers:

Declaration	Туре		
let square $x = x * x$	int ->	int Default	
A squaring function on floats:	square:	float -> float	
Declaration			
<pre>let square(x:float) =</pre>	- x * x	Type the argument	_
let square x:float =	X * X	Type the result	
		Type expression for the result	
let square x = x:floa	at * x	Type a variable	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A squaring function on integers:

Declar	ation			Туре)		
let s	quare	х =	x * x	int	->	int	Default
A squari	ing func	tion or	n floats:	squai	re:	floa	at -> float
Declar	ation						
let s	quare	(x:fl	oat) =	= x *	Х	Туре	e the argument
let s	quare	x:fl	oat =	x * 2	ĸ	Туре	e the result
						Туре	
			x:floa	at * 2		Туре	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A squaring function on integers:

Declaration	Туре		
let square x = x * x	int ->	int	Default
A squaring function on floats:	square:	floa	at -> float
Declaration			
<pre>let square(x:float) =</pre>	х * х	Туре	the argument
<pre>let square x:float = :</pre>	х * х	Туре	e the result
let square $x = x * x$:	float	Туре	e expression for the result
let square x = x:floa	t * x	Туре	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A squaring function on integers:

Declaration	Туре		
let square x = x * x	int ->	int C	Default
A squaring function on floats:	square:	float	-> float
Declaration			
<pre>let square(x:float) =</pre>	х * х	Type th	le argument
<pre>let square x:float = ;</pre>	х * х	Type th	ie result
let square $x = x * x$:	float	Type ex	xpression for the result
let square x = x:floa	t * x	Type a	variable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A squaring function on integers:

Declaration	Туре	
let square $x = x * x$	int ->	int Default
A squaring function on floats:	square:	float -> float
Declaration		
<pre>let square(x:float) =</pre>	х * х	Type the argument
<pre>let square x:float = :</pre>	х * х	Type the result
let square $x = x * x$:	float	Type expression for the result
let square $x = x:float$	t * x	Type a variable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Tuples

An ordered collection of *n* values $(v_1, v_2, ..., v_n)$ is called an *n*-tuple

Examples

(3, false);	2-tuples (pairs)
val it = (3, false) : int * bool	z-tupies (pairs)
(1, 2, ("ab",true));	3-tuples (triples)
val it = (1, 2, ("ab", true)) :?	o-tupies (triples)

Equality defined componentwise, ordering lexicographically

```
(1, 2.0, true) = (2-1, 2.0*1.0, 1<2);;
val it = true : bool
compare (1, 2.0, true) (2-1, 3.0, false);;
val it : int = -1
```

provided = is defined on components

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Tuples

An ordered collection of *n* values $(v_1, v_2, ..., v_n)$ is called an *n*-tuple

Examples

(3, false);	2-tuples (pairs)
val it = (3, false) : int * bool	2-lupies (pairs)
(1, 2, ("ab",true));	3-tuples (triples)
val it = (1, 2, ("ab", true)) :?	

Equality defined componentwise, ordering lexicographically

```
(1, 2.0, true) = (2-1, 2.0*1.0, 1<2);;
val it = true : bool
compare (1, 2.0, true) (2-1, 3.0, false);;
val it : int = -1
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Tuples

An ordered collection of *n* values $(v_1, v_2, ..., v_n)$ is called an *n*-tuple

Examples

(3, false);	2-tuples (pairs)
val it = (3, false) : int * bool	2-lupies (pairs)
(1, 2, ("ab",true));	3-tuples (triples)
val it = (1, 2, ("ab", true)) :?	

Equality defined componentwise, ordering lexicographically

```
(1, 2.0, true) = (2-1, 2.0*1.0, 1<2);;
val it = true : bool
compare (1, 2.0, true) (2-1, 3.0, false);;
val it : int = -1
provided = is defined on components
```

Tuple patterns

Extract components of tuples

let ((x,_),(_,y,_)) = ((1,true),("a","b",false));;
val x : int = 1
val y : string = "b"

Pattern matching yields bindings

Restriction

```
let (x, x) = (1, 1);;
...
```

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Tuple patterns

Extract components of tuples

let ((x,_),(_,y,_)) = ((1,true),("a","b",false));;
val x : int = 1
val y : string = "b"

Pattern matching yields bindings

Restriction

let (x,x) = (1,1);;
...
... ERROR ... 'x' is bound twice in this pattern

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Local declarations

Examples

```
let g x =
    let a = 6
    let f y = y + a
    x + f x;;
val g : int -> int
g 1;;
val it : int = 8
```

Note: a and f are not visible outside of g

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Declaration of types and exceptions

```
Example: Solve ax^2 + bx + c = 0
```

```
type Equation = float * float * float
type Solution = float * float
exception Solve; (* declares an exception *)
```

The type of the function solve is (the expansion of)

Equation -> Solution

d is declared once and used 3 times

readability, efficiency

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Declaration of types and exceptions

The type of the function solve is (the expansion of)

Equation -> Solution

 d is declared once and used 3 times

readability, efficiency

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Solution using local declarations

```
let solve(a, b, c) =
   let d = b*b-4.0*a*c
    if d < 0.0 || a = 0.0 then raise Solve else
    ((-b + sqrt d)/(2.0*a), (-b - sqrt d)/(2.0*a));;
```

◆□> ◆□> ◆豆> ◆豆> ・豆・ のへぐ

Solution using local declarations

```
let solve(a, b, c) =
    let d = b*b-4.0*a*c
    if d < 0.0 \parallel a = 0.0 then raise Solve else
    ((-b + sqrt d)/(2.0*a), (-b - sqrt d)/(2.0*a));;
let solve(a, b, c) =
    let sqrtD =
      let d = b*b-4.0*a*c
      if d < 0.0 || a = 0.0 then raise Solve
      else sqrt d
    ((-b + sqrtD) / (2.0*a), (-b - sqrtD) / (2.0*a));;
                       Indentation matters
```

◆□> ◆□> ◆豆> ◆豆> ・豆・ のへぐ

Example: Rational Numbers

Consider the following signature, specifying operations and their types:

Specification	Comment
type qnum = int * int	rational numbers
exception QDiv	division by zero
mkQ: int * int \rightarrow qnum	construction of rational numbers
.+.: qnum * qnum $ ightarrow$ qnum	addition of rational numbers
: qnum * qnum \rightarrow qnum	subtraction of rational numbers
.*.: qnum * qnum $ ightarrow$ qnum	multiplication of rational numbers
./.: qnum * qnum \rightarrow qnum	division of rational numbers
.=.: qnum * qnum \rightarrow bool	equality of rational numbers
toString: qnum \rightarrow string	String representation of rational numbers

Intended use

 $\begin{aligned} &\text{let } q1 = \mathsf{mkQ}(2,3);; & q_1 = \frac{2}{3} \\ &\text{let } q2 = \mathsf{mkQ}(12, -27);; & q_2 = -\frac{12}{27} = -\frac{4}{9} \\ &\text{let } q3 = \mathsf{mkQ}(-1, 4) \cdot \cdot q2 \cdot q1;; & q_3 = -\frac{1}{4} \cdot q_2 - q_1 = -\frac{5}{9} \\ &\text{let } q4 = q1 \cdot q2 \cdot q3;; & q_4 = q_1 - q_2/q_3 = \frac{2}{3} - \frac{-4}{9}/\frac{-5}{9} \\ &\text{toString } q4;; \\ &\text{val it : string = "-2/15"} &= -\frac{2}{15} \end{aligned}$

Operators are infix with usual precedences

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Note: Without using infix:

let q3 = (.-.)((.*.) (mkQ(-1,4)) q2) q1;;

Intended use

let q1 = mkQ(2,3);; let q2 = mkQ(12, -27);; let q3 = mkQ(-1, 4) .*. q2 .-. q1;; q_2 = $-\frac{12}{27} = -\frac{4}{9}$ let q3 = mkQ(-1, 4) .*. q2 .-. q1;; $q_3 = -\frac{1}{4} \cdot q_2 - q_1 = -\frac{5}{9}$ let q4 = q1 .-. q2 ./. q3;; $q_4 = q_1 - q_2/q_3 = \frac{2}{3} - \frac{-4}{9}/\frac{-5}{9}$ toString q4;; val it : string = "-2/15" = $-\frac{2}{15}$

Operators are infix with usual precedences

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Note: Without using infix:

let q3 = (.-.)((.*.) (mkQ(-1,4)) q2) q1;;

Intended use

let q1 = mkQ(2,3);; let q2 = mkQ(12, -27);; let q3 = mkQ(-1, 4) .*. q2 .-. q1;; q_2 = $-\frac{12}{27} = -\frac{4}{9}$ let q3 = mkQ(-1, 4) .*. q2 .-. q1;; $q_3 = -\frac{1}{4} \cdot q_2 - q_1 = -\frac{5}{9}$ let q4 = q1 .-. q2 ./. q3;; $q_4 = q_1 - q_2/q_3 = \frac{2}{3} - \frac{-4}{9}/\frac{-5}{9}$ toString q4;; val it : string = "-2/15" = $-\frac{2}{15}$

Operators are infix with usual precedences

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Note: Without using infix:

let q3 = (.-.)((.*.) (mkQ(-1,4)) q2) q1;;

Representation: (a, b), b > 0 and gcd(a, b) = 1

Example $-\frac{12}{27}$ is represented by (-4, 9)

Greatest common divisor (Euclid's algorithm)

(0,n) −> n	
(m,n) -> gcd(n % m,m);;	
val gcd : int * int -> int	

Function to cancel common divisors:

```
let canc(p,q) =
   let sign = if p*q < 0 then -1 else
   let ap = abs p
   let aq = abs q
   let d = gcd(ap,aq)
   (sign * (ap / d), aq / d);;</pre>
```

```
canc(12,-27);;
val it : int * int = (-4, 9,
```

Representation: (a, b), b > 0 and gcd(a, b) = 1

Example $-\frac{12}{27}$ is represented by (-4,9)

Greatest common divisor	(Euclid's algorithm)
-------------------------	----------------------

let rec gcd = function	
(0,n) → n	- gcd(12,27);;
(m,n) -> gcd(n % m,m);;	val it : int = 3
val gcd : int * int -> int	

Function to cancel common divisors:

```
let canc(p,q) =
   let sign = if p*q < 0 then -1 else
   let ap = abs p
   let aq = abs q
   let d = gcd(ap,aq)
   (sign * (ap / d), aq / d);;</pre>
```

```
val it : int * int = (-4, 9,
```

Representation: (a, b), b > 0 and gcd(a, b) = 1

Example $-\frac{12}{27}$ is represented by (-4, 9)

Greatest common divisor (Euclid's algorithm)

let rec gcd = function	
(0,n) −> n	- gcd(12,27);;
(m,n) -> gcd(n % m,m);;	val it : $int = 3$
val gcd : int * int -> int	

Function to cancel common divisors:

```
let canc(p,q) =
    let sign = if p*q < 0 then -1 else 1
    let ap = abs p
    let aq = abs q
    let d = gcd(ap,aq)
    (sign * (ap / d), aq / d);;
canc(12,-27);;
val it : int * int = (-4, 9)</pre>
```

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Program for rational numbers

Declaration of the constructor:

exception QDiv;; let mkQ = function | (_,0) -> raise QDiv | pr -> canc pr;;

Rules of arithmetic:

 $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd} \qquad \qquad \frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$ $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \qquad \qquad \frac{a}{b} / \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} \quad \text{when } c \neq 0$ $\frac{a}{b} = \frac{c}{d} = ad = bc$

Program corresponds direly to these rules

```
let (.+.) (a,b) (c,d) = canc(a*d + b*c, b*d);;
let (.-.) (a,b) (c,d) = canc(a*d - b*c, b*d);;
let (.*.) (a,b) (c,d) = canc(a*c, b*d);;
let (./.) (a,b) (c,d) = (a,b) .*. mkQ(d,c);;
let (.=.) (a,b) (c,d) = (a,b) = (c,d);;
```

Note: Functions must preserve the invariant of the representation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Program for rational numbers

Declaration of the constructor:

```
exception QDiv;;
let mkQ = function
  | (_,0) -> raise QDiv
  | pr -> canc pr;;
```

Rules of arithmetic:

 $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd} \qquad \qquad \frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$ $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \qquad \qquad \frac{a}{b} / \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} \quad \text{when } c \neq 0$ $\frac{a}{b} = \frac{c}{d} = ad = bc$

Program corresponds direly to these rules

```
let (.+.) (a,b) (c,d) = canc(a*d + b*c, b*d);;
let (.-.) (a,b) (c,d) = canc(a*d - b*c, b*d);;
let (.*.) (a,b) (c,d) = canc(a*c, b*d);;
let (./.) (a,b) (c,d) = (a,b) .*. mkQ(d,c);;
let (.=.) (a,b) (c,d) = (a,b) = (c,d);;
```

Note: Functions must preserve the invariant of the representation

・ロト・西ト・ヨト・ヨト・日・ つへぐ

Program for rational numbers

Declaration of the constructor:

```
exception QDiv;;
let mkQ = function
  | (_,0) -> raise QDiv
  | pr -> canc pr;;
```

Rules of arithmetic:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd} \qquad \qquad \frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}
\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \qquad \qquad \frac{a}{b} / \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} \quad \text{when } c \neq 0
\frac{a}{b} = \frac{c}{d} = ad = bc$$

Program corresponds direly to these rules

```
let (.+.) (a,b) (c,d) = canc(a*d + b*c, b*d);;
let (.-.) (a,b) (c,d) = canc(a*d - b*c, b*d);;
let (.*.) (a,b) (c,d) = canc(a*c, b*d);;
let (./.) (a,b) (c,d) = (a,b) .*. mkQ(d,c);;
let (.=.) (a,b) (c,d) = (a,b) = (c,d);;
```

Note: Functions must preserve the invariant of the representation

・ロト・西ト・ヨト ・ヨー シック

Pattern matching and recursion

Consider unzip that maps a list of pairs to a pair of lists:

```
unzip([(X_0, y_0); (X_1, y_1); \dots; (X_{n-1}, y_{n-1})]
= ([X_0; X_1; \dots; X_{n-1}], [y_0; y_1; \dots; y_{n-1}])
```

with the declaration:

unzip [(1,"a");(2,"b")];; val it : int list * string list = ([1; 2], ["a"; "b"])

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Notice

- pattern matching on result of recursive call
- unzip is polymorphic. Type?
- unzip is available in the List library.

Pattern matching and recursion

Consider unzip that maps a list of pairs to a pair of lists:

```
unzip([(X_0, y_0); (X_1, y_1); \dots; (X_{n-1}, y_{n-1})]
= ([X_0; X_1; \dots; X_{n-1}], [y_0; y_1; \dots; y_{n-1}])
```

with the declaration:

```
val it : int list * string list = ([1; 2], ["a"; "b"])
```

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Notice

- pattern matching on result of recursive call
- unzip is polymorphic. Type?
- unzip is available in the List library.

Summary

You are acquainted with a major part of the F# language.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Higher-order (or curried) functions
- Basic types, equality and ordering
- Polymorphism
- Tuples
- Patterns
- A look at lists and list recursion