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Recall the match construct

match test-exp with
| pattern-1 [ when c-1 ] -> result-exp-1
| ...
| pattern-n [ when c-n ] -> result-exp-n

Pattern matching: match (the result of evaluating) the expression test-exp against a series of
patterns to decide what to do next.

From top to bottom.

If we have a match on a pattern, then also evaluate the when guard c. A missing when guard is
the same as having when true.

If c evaluates to true, then the corresponding result-exp is the result of this match and we
evaluate it.

If a pattern does not match or c evaluates to false, then continue with the next pattern.

At most one result-exp gets evaluated. The type of the match expression is determined by the
result-exps



Recall the match construct: an example

Here is an incomplete program (a program with some “holes”):

let rec foo (xs : int list) (n : int) : int =
let y = ?1
match xs with
| [] -> ?2
| x::xs' when ?3 -> ?4
| _ -> ?5

What are the holes and what can we fill them with?

Hole Type In scope
?1 any type xs, n, foo, ...
?2 int xs, n, foo, y, ...
?3 bool xs, n, foo, y, x, xs’, ...
?4 int xs, n, foo, y, x, xs’, ...
?5 int xs, n, foo, y, ...



Part I: Discriminated Unions (motivation)

Suppose we wish to represent contact information.

An address can be:
▶ type PhysAddr = string * string * string

let a1 : PhysAddr = "Ehitajate tee", "5", "Tallinn"

▶ type VirtAddr = string * string
let a2 : VirtAddr = "juulius", "ttu.ee"

We wish to have a list of all addresses, both physical and virtual, of a contact.

Note that a1 :: a2 :: [] does not typecheck. (Why?)

Goal: a type in which we can combine the two address types.

Informally, we would like to have something like

type Address = PhysAddr + VirtAddr

where the + operator on types would be similar to disjoint union of sets.

In other words, a : Address could either be a physical or a virtual address but not both.



Part I: Discriminated Unions (defining, constructing)

Defining a type with distinct cases (this is the discriminating part):

type type-name =
| case-identifier-1 of type-1-1 [ * type-1-2 ...]]
...
| case-identifier-n of type-n-1 [ * type-n-2 ...]]

A simple example that combines the types string, int and int:

type StringsOrInts =
| OfString of string
| OfInt1 of int
| OfInt2 of int

Note that:
▶ OfString "abc" : StringsOrInts

▶ The expression OfString 17 does not typecheck
▶ OfInt1 17 : StringsOrInts

▶ OfInt2 17 : StringsOrInts

▶ OfInt1 17 <> OfInt2 17



Part I: Discriminated Unions (deconstructing)
In general, to use a value of a discriminated union type, we need to know which of the constructors
(cases) was used to construct it and we have to say what to do in each case.

Suppose we are given an soi : StringsOrInts and we wish to compute from it a result of type
R. To accomplish this we essentially have to describe three functions:

string -> R // when soi = OfString s
int -> R // when soi = OfInt1 n
int -> R // when soi = OfInt2 n

We can use pattern matching for this.

Importantly, the case-identifiers can be used as patterns and we can also bind the values
passed to the constructors.

A case-indentifier only matches itself.

let foo (soi : StringsOrInts) : bool =
match soi with
| OfString s -> false
| OfInt1 n when n < 0 -> true
| OfInt1 n -> n % 2 = 0
| OfInt2 _ -> true



Enumeration Types as Discriminated Unions

The following is a type definition enumerating three colours:

type Colour = Red of unit | Green of unit | Blue of unit

We can also declare a constructor without any argument types

As () is the only value of type unit, an equivalent definition is:

type Colour = Red | Green | Blue

Using an enumeration type:

let show (c : Colour) : string =
match c with
| Red -> "red"
| Green -> "green"
| Blue -> "blue"



Discriminated Unions with a Single Constructor

The following is a valid type definition:

type DifferentInt = DifferentInt of int

This may seem rather useless: values of type DifferentInt are just values of type int labelled
with the DifferentInt label, i.e., equivalent to int

let di2int (di : DifferentInt) : int =
match di with
| DifferentInt n -> n

di2int (DifferentInt 17) = 17

Such types can be useful:

type Meter = M of float
type Kilogram = Kg of float
type Second = S of float

We have three different types that are equivalent to type float. See also: units of measure.

The expression M 1.0 : Second does not typecheck



Recursive Discriminated Unions

Discriminated unions can be recursive: in the argument types to the constructor we can refer to the
type we are defining

type IntList = INil | ICons of int * IntList

Note the IntList argument to ICons and the lack of arguments to INil.

let il1 : IntList = INil
let il2 : IntList = ICons (1, INil)
let il3 : IntList = ICons (1, ICons (2, ICons (3, INil)))

To use a value of a recursive DU we may need to use recursion:

let rec sum (il : IntList) : int =
match il with
| INil -> 0
| ICons (n, il') -> n + sum il'



Parameterised Discriminated Unions
Here is another recursive DU:

type StringList = SNil | SCons of string * StringList

This looks very similar to IntList

If we ignore the names we have chosen, then the only difference is the type of the first argument to
the Cons constructor: int vs string

We can abstract out the type of this argument:

type 'a PList = Nil // []
| Cons of 'a * 'a PList // ::

This is essentially how lists are defined in F#.

We can think of PList as a function on types (something like type -> type): given a type T it
gives us the type T PList.

Note that the type parameter can also be given in a different notation:

type PList<'a> = Nil // []
| Cons of 'a * PList<'a> // ::



The option types

Intuition: take an existing type and add one additional value to it.

type 'a option = None | Some of 'a

The additional value (None) is often used to represent the lack of a value of type 'a.

The option type is used quite extensively in the standard library.

You may already be familiar with somewhat similar ideas from other languages.

For example, in Java, the type (or class) Integer has as values (objects) all ints together with one
additional value, null.

Java leaves the presence of this additional value implicit. Furthermore, it is not possible to have a
reference type without this additional value.

With option types we can be precise about the absence/presence of such an additional value.

Another viewpoint: 'a option can be seen as the type of lists of length at most one.



Examples

let noInt : int option = None
let anInt : int option = Some 11

A function that returns the index of the first occurrence of an element in a list:

let rec indexOf (el : 'a) (xs : 'a list) : int option =
match xs with
| [] -> None
| x :: xs' -> if x = el

then Some 0
else match indexOf el xs' with

| None -> None
| Some i -> Some (i + 1)

As the element might not be in the list, the result type is int option.

Note that we first match on the list xs to traverse the list.

We also match on the result of the recursive call indexOf el xs' to handle the cases when el
was not in the tail xs' and when it was.



Records: aggregates of named values

type typename = { label_1 : type_1;
...
label_n : type_n; }

Here is an example record type and two values of that type. When creating a record we must supply
a value for each field.

type Person = { name : string; age : int }

let tõnu = { name = "Tõnu"; age = 12 }
val tõnu : Person = { name = "Tõnu"; age = 12 }
tõnu.age // evaluates to 12

let tõnu2 = { Person.age = 12; name = "Tõnu" }
let bad = { age = 12 }

We can create (copy) a modification of a record.

let mari = { tõnu with name = "Mari" }
val mari : Person = { name = "Mari"; age = 12 }



More records

Pattern matching on records.

let foo (p : Person) : string =
match p with
| { name = ""; age = _ } -> "empty string"
| { name = n ; age = a } -> $"Name is {n} and age is {a}"

Records can be recursive and parameterized.

type 'a NotList = { head : 'a; tail : 'a NotList }

let rec x = { head = 1; tail = { head = 2; tail = x } }
x.head // ?
x.tail.head // ?
x.tail.tail.head // ?

This is not allowed! (But is allowed with IntList.)

let rec xs = 1 :: 2 :: xs



Part II: Lists

▶ Generation of lists

▶ Useful functions on lists

▶ Typical recursions on lists



Range expressions (1)

A simple range expression [b .. e], where e ≥ b, generates the list:

[b; b + 1; b + 2; . . . ; b + n]

where n is chosen such that b + n ≤ e < b + n + 1.

Example

[ -3 .. 5 ];;
val it : int list = [-3; -2; -1; 0; 1; 2; 3; 4; 5]

[2.4 .. 3.0 ** 1.7];;
val it : float list = [2.4; 3.4; 4.4; 5.4; 6.4]

Note that 3.0 ** 1.7 = 6.47300784.

The range expression generates the empty list when e < b:

[7 .. 4];;
val it : int list = []
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Range expressions (2)

The range expression [b .. s .. e] generates either an ascending or a descending list:

[b .. s .. e] = [b; b + s; b + 2s; . . . ; b + ns]

where
{

b + ns ≤ e < b + (n + 1)s if s > 0
b + ns ≥ e > b + (n + 1)s if s < 0

depending on the sign of s.

Examples:

[6 .. -1 .. 2];;
val it : int list = [6; 5; 4; 3; 2]

and the float representation of 0, π/2, π, 3
2π, 2π is generated by:

[0.0 .. System.Math.PI/2.0 .. 2.0*System.Math.PI];;
val it : float list =

[0.0; 1.570796327; 3.141592654; 4.71238898; 6.283185307]
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Simple recursion on lists

We consider now three simple functions:
▶ append
▶ reverse
▶ isMember

whose declarations follow the structure of list argument

let rec f ... xs ... =
| [] -> v
| x::xs -> .... f xs ...

using just two clauses.



Append

The infix operator @ (called ‘append’) joins two lists:

[x1;x2; . . .;xm] @ [y1;y2; . . .;yn]
= [x1;x2; . . .;xm;y1;y2; . . .;yn]

Properties
[] @ ys = ys

[x1;x2; . . .;xm] @ ys = x1::([x2; . . .;xm] @ ys)

Declaration

let rec (@) xs ys =
match xs with
| [] -> ys
| x::xs' -> x::(xs' @ ys);;

val (@) : 'a list -> 'a list -> 'a list
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Append: evaluation

let rec (@) xs ys =
match xs with
| [] -> ys
| x::xs' -> x::(xs' @ ys);;

Evaluation
[1;2] @ [3;4]

⇝ 1::([2] @ [3,4]) (x 7→ 1, xs′ 7→ [2], ys 7→ [3, 4])
⇝ 1::(2::([] @ [3;4])) (x 7→ 2, xs′ 7→ [ ], ys 7→ [3; 4])
⇝ 1::(2::[3;4]) (ys 7→ [3, 4])
⇝ 1::[2;3;4]
⇝ [1;2;3;4]

▶ Execution time is linear in the size of the first list
▶ Be careful with this usage: xs @ [x]
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Append: polymorphic type

The answer from the system is:

> val (@) : 'a list -> 'a list -> 'a list

▶ 'a is a type variable
▶ The type of @ is polymorphic — it has many forms

’a = int: Appending integer lists

[1;2] @ [3;4];;
val it : int list = [1;2;3;4]

’a = int list: Appending lists of integer list

[[1];[2;3]] @ [[4]];;
val it : int list list = [[1]; [2; 3]; [4]]

@ is a built-in function
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Reverse rev [x1; x2; . . . ; xn] = [xn; . . . ; x2; x1]
let rec naive_rev lst = match lst with
| [] -> []
| x::xs -> naive_rev xs @ [x];;

val naive_rev : 'a list -> 'a list

An evaluation:
naive_rev[1;2;3]

⇝ naive_rev[2;3] @ [1]
⇝ (naive_rev[3] @ [2]) @ [1]
⇝ ((naive_rev[] @ [3]) @ [2]) @ [1]
⇝ (([] @ [3]) @ [2]) @ [1]
⇝ ([3] @ [2]) @ [1]
⇝ (3::([] @ [2])) @ [1]
⇝ (3::[2]) @ [1]
⇝ [3;2] @ [1]
⇝ 3::([2] @ [1])
⇝ . . .
⇝ [3;2;1]

Takes O(n2) time — Built-in version (List.rev) is efficient O(n)
We consider efficiency later.
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Membership — equality constraint

isMember x [y1;y2; . . .;yn]
= (x = y1) ∨ (x = y2) ∨ · · · ∨ (x = yn)
= (x = y1) ∨ (isMember x [y2; . . .;yn])

Declaration

let rec isMember x lst = match lst with
| [] -> false
| y::ys -> x=y || isMember x ys;;
val isMember : 'a -> 'a list -> bool when 'a : equality

▶ ’a is a type variable
▶ ’a must satisfy the constraint equality, i.e., it must be possible to compare values of that

type for equality
▶ Function types do not satisfy equality

isMember (1,true) [(2,true); (1,false)]⇝ false
isMember [1;2;3] [[1]; []; [1;2;3]]⇝ true
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Match on results of recursive call

We consider declarations on the form:

let rec f ... xs ... =
....
let pat(y) = f xs
e(y)

Recall unzip from last week.



Example: sumProd

sumProd [x0;x1; . . .;xn−1]
= ( x0 + x1 + . . . + xn−1 , x0 * x1 * . . . * xn−1 )

The declaration is based on the recursion formula:

sumProd [x0;x1; . . .;xn−1] = (x0 + rSum,x0 * rProd)
where (rSum,rProd) = sumProd [x1; . . .;xn−1]

This gives the declaration

let rec sumProd lst = match lst with
| [] -> (0,1)
| x::rest ->

let (rSum,rProd) = sumProd rest
(x+rSum,x*rProd);;

val sumProd : int list -> int * int

sumProd [2;5];;
val it : int * int = (7, 10)
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where (rSum,rProd) = sumProd [x1; . . .;xn−1]

This gives the declaration

let rec sumProd lst = match lst with
| [] -> (0,1)
| x::rest ->

let (rSum,rProd) = sumProd rest
(x+rSum,x*rProd);;

val sumProd : int list -> int * int

sumProd [2;5];;
val it : int * int = (7, 10)
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Example: split

Declare a function split such that:

split [x0;x1;x2;x3; . . .;xn−1] = ([x0;x2; . . .],[x1;x3; . . .])

The declaration is

let rec split lst = match lst with
| [] -> ([],[])
| [x] -> ([x],[])
| x::y::xs -> let (xs1,xs2) = split xs

in (x::xs1,y::xs2);;

Notice
▶ a convenient division into three cases, and
▶ the recursion formula

split [x0;x1;x2; . . .;xn−1] = (x0 :: xs1,x1 :: xs2)
where (xs1,xs2) = split [x2; . . .;xn−1]
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Part III: Higher-order list functions

Higher-order functions: functions that accept a function as an argument or return a function as a
result

Higher-order functions are:
▶ everywhere

Σb
i=af (i), df

dx , {x ∈ A | P(x)}, . . .

▶ powerful

Parameterized modules, succinct code, . . .

HIGHER-ORDER FUNCTIONS ARE USEFUL
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Now down to earth

Many recursive declarations follows the same schema, for example:

let rec f xs =
match xs with
| [] -> ...
| x :: xs' -> ... (f xs') ...

Goal: avoid repeating (almost) identical code fragments (i.e., patterns)

Solution: capture frequently occurring patterns as higher-order functions

Result: more succinct declarations using higher-order functions

Today we take a look at higher-order list functions:
▶ map

▶ filter

▶ fold, foldBack
▶ exists, forall, tryFind
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Two simple list functions

let rec add n xs =
match xs with
| [] -> []
| x :: xs' -> n + x :: add n xs'

let rec flip xs =
match xs with
| [] -> []
| x :: xs' -> -1 * x :: flip xs'

add: int -> int list -> int list
flip: int list -> int list

add 5 [-2; -1; 0; 1; 2] = [3; 4; 5; 6; 7]
flip [-2; -1; 0; 1; 2] = [2; 1; 0; -1; -2]

The only difference is what happens to the elements of the list: n + x vs -1 * x.

What happens to the elements can be described by a function of type int -> int:
fun x -> n + x vs fun x -> -1 * x.



The map pattern

let rec mapInts (f : int -> int) (xs : int list) : int list =
match xs with
| [] -> []
| x :: xs' -> f x :: mapInts f xs'

We are not doing anything specific to int in this definition. Let’s remove the type annotations and
see what type is inferred from the definition.

let rec map f xs =
match xs with
| [] -> []
| x :: xs' -> f x :: map f xs'

val map: f: ('a -> 'b) -> xs: 'a list -> 'b list

We can now say the following (without using rec).

let add n xs = map (fun x -> n + x) xs
let flip xs = map (fun x -> -1 * x) xs
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More examples

map : ('a -> 'b) -> 'a list -> 'b list

let isPositive xs = map (fun x -> x > 0) xs
let addFstSnd xys = map (fun (x, y) -> x + y) xys

isPositive : int list -> bool list
addFstSnd : (int * int) list -> int list

isPositive [-1; 0; 1] = [false; false; true]
addFstSnd [(-1, 2); (1, 3); (2, 4)] = [1; 4; 6]

The map pattern applies the same function (transformation) to every element in the input list.

map f [v1; . . . ; vn] = [f v1; . . . ; f vn]

Another viewpoint: from a function of type 'a -> 'b construct a function of type
'a list -> 'b list.

map : ('a -> 'b) -> ('a list -> 'b list)



Exercise

Declare a function
g [x1; . . . ; xn] = [x2

1 + 1; . . . ; x2
n + 1]

Remember
map f [v1; . . . ; vn] = [f v1; . . . ; f vn]

There is also a map operation for option types. What does it do?

Option.map : ('a -> 'b) -> 'a option -> 'b option



Something similar to map

Recall the viewpoint that map constructs a function of type 'a list -> 'b list from a function
of type 'a -> 'b.

List.map : ('a -> 'b) -> ('a list -> 'b list)

In the List module there is the following function.

List.collect : ('a -> 'b list) -> ('a list -> 'b list)

What does it do? How to construct a function of type 'a list -> 'b list given a function of
type 'a -> 'b list?

For example, what is (or should be) the result of evaluating the following?

List.collect (fun x -> [x; x - 1]) [1 .. 5]



Higher-order list functions: filter

Set comprehension: {x ∈ xs : p(x)}

filter p xs is the sublist of those elements x of xs for which p x = true

Declaration Library function

let rec filter p xs =
match xs with
| [] -> []
| x :: xs' -> if p x

then x :: filter p xs'
else filter p xs'

val filter : ('a -> bool) -> 'a list -> 'a list

Example

filter System.Char.IsLetter ['2'; 'p'; 'F'; '-']
val it : char list = ['p'; 'F']

where System.Char.IsLetter c is true iff c ∈ {′A′, . . . , ′Z′} ∪ {′a′, . . . , ′z′}
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Combining a list of values to a single value

Add the elements in a list of integers:

let rec sum (xs : int list) : int =
match xs with
| [] -> 0
| x :: xs' -> x + sum xs'

Multiply the absolute values of a list of integers:

let rec prodabs (xs : int list) : int =
match xs with
| [] -> 1
| x :: xs' -> abs x * prodabs xs'

Rather small differences:
▶ the base value: 0 vs 1
▶ the function applied to x: id vs abs
▶ the function used to combine with result of recursive call: + vs *



A first generalisation

Capture the pattern in sum and prodabs by abstracting out the differences:
▶ the base value b

▶ the function f combining an element x and a partial result r

let rec combineInts (f : int -> int -> int)
(xs : int list)
(b : int)
: int =

match xs with
| [] -> b
| x :: xs' -> f x (combineInts f xs' b)

let sum xs = combineInts (fun x r -> x + r) xs 0
let prodabs xs = combineInts (fun x r -> abs x * r) xs 1

Observe that we do not do anything that is specific to integers in the definition of combineInts.
Thus we have no reason to restrict this pattern to integers.



Folding a list (from the right)

let rec foldBack (f : 'a -> 'b -> 'b)
(xs : 'a list)
(b : 'b)
: 'b =

match xs with
| [] -> b
| x :: xs' -> f x (foldBack f xs' b)

let sum xs = foldBack (fun x r -> x + r) xs 0
let prodabs xs = foldBack (fun x r -> abs x * r) xs 1

We fold back (or from the right) in the sense that the base value “goes” to the right of the list and we
start combining from there.

sum [1; 2; 3] = foldBack (+) [1; 2; 3] 0
~> 1 + (foldBack (+) [2; 3] 0)
~> 1 + (2 + (foldBack (+) [3] 0))
~> 1 + (2 + (3 + (foldBack (+) [] 0)))
~> 1 + (2 + (3 + 0))
~> 6



Higher-order list functions: foldBack
Suppose that ⊗ is some infix function. Then foldBack operates as:

foldBack (⊗) [a0; a1; . . . ; an−2; an−1] eb

= a0 ⊗ (a1 ⊗ (. . . (an−2 ⊗ (an−1 ⊗ eb)) . . .))

Many functions can be expressed as a foldBack:
▶ let conj xs = foldBack (&&) xs true

▶ let (@) xs ys = foldBack (fun x r -> x :: r) xs ys

▶ let length xs = foldBack (fun _ r -> 1 + r) xs 0

▶ let map f xs = foldBack (fun x r -> f x :: r) xs []

Evaluating a map that is defined via foldBack:

map abs [-1; 2; -3]
= foldBack fn [-1; 2; -3] []
~> abs -1 :: foldBack fn [2; -3] []
~> abs -1 :: abs 2 :: foldBack fn [-3] []
~> abs -1 :: abs 2 :: abs -3 :: foldBack fn [] []
~> abs -1 :: abs 2 :: abs -3 :: []
~> 1 :: 2 :: 3 :: []

where fn = fun x r -> abs x :: r



Higher-order list functions: fold (I)
We can also fold from the left:

let rec fold (f : 'b -> 'a -> 'b)
(r : 'b)
(xs : 'a list)
: 'b =

match xs with
| [] -> r
| x :: xs' -> fold f (f r x) xs'

Example: using cons in connection with fold gives the reverse function:

let rev xs = fold (fun rs x -> x :: rs) [] xs

This function has linear execution time:

rev [1; 2; 3]
= fold fn [] [1; 2 ;3]
~> fold fn (1 :: []) [2; 3]
~> fold fn (2 :: 1 :: []) [3]
~> fold fn (3 :: 2 :: 1 :: []) []
~> 3 :: 2 :: 1 :: []
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Higher-order list functions: fold (II)

Suppose that ⊕ is an infix function.

Then the fold function operates as:

fold (⊕) eb [a0; a1; . . . ; an−2; an−1 ]
= ((. . . ((eb ⊕ a0)⊕ a1) . . .)⊕ an−2)⊕ an−1

In other words, it applies ⊕ from left to right.

Compare:

fold (-) 0 [1; 2; 3] = ((0 - 1) - 2) - 3 = -6

foldBack (-) [1; 2; 3] 0 = 1 - (2 - (3 - 0)) = 2

fold (fun r x -> x :: r) [] [1;2;3;4;5]

foldBack (fun x r -> x :: r) [1;2;3;4;5] []
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Higher-order list functions: exists

Predicate: For some x in xs : p(x).

exists p xs =

{
true if p(x) = true for some x in xs
false otherwise

Declaration Library function

let rec exists p xs =
match xs with
| [] -> false
| x :: xs' -> p x || exists p xs'

val exists : ('a -> bool) -> 'a list -> bool

Example

exists (fun x -> x >= 2) [1; 3; 1; 4]
val it : bool = true

Exercise: define exists as a fold. Compare it to this definition.
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Exercise

Declare isMember function using exists.

let isMember x ys = exists ?????
val isMember : ’a -> ’a list -> bool when ’a : equality

Remember

exists p xs =

{
true if p(x) = true for some x in xs
false otherwise



Higher-order list functions: forall

Predicate: For every x in xs : p(x).

forall p xs =

{
true if p(x) = true, for all elements x in xs
false otherwise

Declaration Library function

let rec forall p xs =
match xs with
| [] -> true
| x :: xs' -> p x && forall p xs'

val forall : ('a -> bool) -> 'a list -> bool

Example

forall (fun x -> x >= 2) [1; 3; 1; 4]
val it : bool = false
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Exercises

Declare a function
disjoint xs ys

which is true when there are no common elements in the lists xs and ys, and false otherwise.

Declare a function
subset xs ys

which is true when every element in the lists xs is in ys, and false otherwise.

Remember

forall p xs =

{
true if p(x) = true, for all elements x in xs
false otherwise
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Exercise

Declare a function
inter xs ys

which contains the common elements of the lists xs and ys — i.e. their intersection.

Remember:
filter p xs is the list of those elements x of xs where p(x) = true.



Higher-order list functions: tryFind

tryFind p xs =

{
Some x for an element x of xs with p(x) = true
None if no such element exists

let rec tryFind p xs =
match xs with
| x :: xs' when p x -> Some x
| _ :: xs' -> tryFind p xs'
| _ -> None

val tryFind : ('a -> bool) -> 'a list -> 'a option

tryFind (fun x -> x > 3) [1;5;-2;8]
val it : int option = Some 5



Higher-order list functions: tryFind

tryFind p xs =

{
Some x for an element x of xs with p(x) = true
None if no such element exists

let rec tryFind p xs =
match xs with
| x :: xs' when p x -> Some x
| _ :: xs' -> tryFind p xs'
| _ -> None

val tryFind : ('a -> bool) -> 'a list -> 'a option

tryFind (fun x -> x > 3) [1;5;-2;8]
val it : int option = Some 5



Higher-order list functions: tryFind

tryFind p xs =

{
Some x for an element x of xs with p(x) = true
None if no such element exists

let rec tryFind p xs =
match xs with
| x :: xs' when p x -> Some x
| _ :: xs' -> tryFind p xs'
| _ -> None

val tryFind : ('a -> bool) -> 'a list -> 'a option

tryFind (fun x -> x > 3) [1;5;-2;8]
val it : int option = Some 5



Exercise: union of sets

Let an insertion function be declared by

let insert x ys = if isMember x ys then ys else x::ys;;

Declare a union function on sets, where a set is represented by a list without duplicated elements.

Remember:
foldBack (⊕) [x1;x2; . . . ;xn] b ⇝ x1 ⊕ (x2 ⊕ · · · ⊕ (xn ⊕ b) · · · )



Summary

Many recursive list functions follow the same schema. For example:

let rec f xs =
match xs with
| [] -> ...
| x :: xs' -> ... (f xs') ...

Takeaway:

Succinct declarations achievable using higher-order functions

In other words, avoid repetition by using higher-order functions

More precisely, if you find yourself repeating a pattern, you should try to extract this pattern as a
higher-order function



Appendix I



Part I: Disjoint Sets – An Example

A shape is either a circle, a square, or a triangle
▶ the union of three disjoint sets

type shape =
Circle of float

| Square of float
| Triangle of float*float*float;;

The tags Circle, Square and Triangle are constructors:

- Circle 2.0;;
> val it : shape = Circle 2.0

- Triangle(1.0, 2.0, 3.0);;
> val it : shape = Triangle(1.0, 2.0, 3.0)

- Square 4.0;;
> val it : shape = Square 4.0
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Constructors in Patterns

A shape-area function is declared

let area s = match s with
| Circle r -> System.Math.PI * r * r
| Square a -> a * a
| Triangle(a,b,c) ->

let s = (a + b + c)/2.0
sqrt(s*(s-a)*(s-b)*(s-c)) ;;

> val area : shape -> real

following the structure of shapes.

▶ a constructor only matches itself

area (Circle 1.2)
⇝ (System.Math.PI * r * r, [r 7→ 1.2])
⇝ . . .
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The problem

An electronic cash register contains a data register associating the name of the article and
its price to each valid article code. A purchase comprises a sequence of items, where each
item describes the purchase of one or several pieces of a specific article.

The task is to construct a program which makes a bill of a purchase. For each item the bill
must contain the name of the article, the number of pieces, and the total price, and the bill
must also contain the grand total of the entire purchase.
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Goal and approach

Goal: the main concepts of the problem formulation are traceable in the program.

Approach: to name the important concepts of the problem and associate types with the names.
▶ This model should facilitate discussions about whether it fits the problem formulation.

Aim: A succinct, elegant program reflecting the model.
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A Functional Model

▶ Name key concepts and give them a type

A signature for the cash register:

type articleCode = string
type articleName = string
type price = int
type register = (articleCode * (articleName*price)) list
type noPieces = int
type item = noPieces * articleCode
type purchase = item list
type info = noPieces * articleName * price
type infoseq = info list
type bill = infoseq * price

makeBill: register -> purchase -> bill

Is the model adequate?
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Example

The following declaration names a register:

let reg = [("a1",("cheese",25));
("a2",("herring",4));
("a3",("soft drink",5)) ];;

The following declaration names a purchase:

let pur = [(3,"a2"); (1,"a1")];;

A bill is computed as follows:

makeBill reg pur;;
val it : (int * string * int) list * int =

([(3, "herring", 12); (1, "cheese", 25)], 37)
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Functional decomposition (1)

Type: findArticle: articleCode → register → articleName * price

let rec findArticle ac lst = match lst with
| (ac',adesc)::_ when ac=ac' -> adesc
| _::reg -> findArticle ac reg
| _ ->

failwith(ac + " is an unknown article code");;
val findArticle : string -> (string * 'a) list -> 'a

Note that the specified type is an instance of the inferred type.

An article description is found as follows:

findArticle "a2" reg;;
val it : string * int = ("herring", 4)

findArticle "a5" reg;;
System.Exception: a5 is an unknown article code

at FSI_0016.findArticle[a] ...

Note: failwith is a built-in function that raises an exception
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Functional decomposition (2)
Type: makeBill: register → purchase → bill

let rec makeBill reg items = match items with
| [] -> ([],0)
| (np,ac)::pur ->

let (aname,aprice) = findArticle ac reg
let tprice = np*aprice
let (billtl,sumtl) = makeBill reg pur
((np,aname,tprice)::billtl, tprice+sumtl);;

The specified type is an instance of the inferred type:

val makeBill :
(string * ('a * int)) list -> (int * string) list

-> (int * 'a * int) list * int

makeBill reg pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)
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Patterns with guards: Three versions of findArticle

An if-then-else expression in

let rec findArticle ac articles = match articles with
| (ac',adesc)::reg -> if ac=ac' then adesc

else findArticle ac reg
| _ -> failwith(ac + " is an unknown article code");;

may be avoided using clauses with guards:

let rec findArticle ac articles = match articles with
| (ac',adesc)::reg when ac=ac' -> adesc
| (ac',adesc)::reg -> findArticle ac reg
| _ -> failwith(ac + " is an unknown article code");;

This may be simplified using wildcards:

let rec findArticle ac articles = match articles with
| (ac',adesc)::_ when ac=ac' -> adesc
| _::reg -> findArticle ac reg
| _ -> failwith(ac + " is an unknown article code");;
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Summary

▶ A succinct model is achieved using type declarations.
▶ Easy to check whether it fits the problem.
▶ Conscious choice of variables (on the basis of the model) increases readability of the program.
▶ Standard recursions over lists solve the problem.
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