
ITT8060: Advanced Programming (in F#)
Lecture 5: Records. Sets and maps as abstract data types

Juhan Ernits, Hendrik Maarand and Ian Erik Varatalu
based on slides by Michael R. Hansen

Department of Software Science, Tallinn University of Technology

04/10/2023

Overview

Sets and Maps as abstract data types
▶ Useful in the modelling and solution of many problems
▶ Many similarities with the list library

Recommendation: Use these libraries whenever it is appropriate.

The set concept (1)

A set (in mathematics) is a collection of element like

{Bob,Bill,Ben}, {1, 3, 5, 7, 9},N, and R

▶ the sequence in which elements are enumerated is of no concern, and
▶ repetitions among members of a set is of no concern either

It is possible to decide whether a given value is in the set.

Alice ̸∈ {Bob,Bill,Ben} and 7 ∈ {1, 3, 5, 7, 9}

The empty set containing no element is written {} or ∅.

The set concept (1)

A set (in mathematics) is a collection of element like

{Bob,Bill,Ben}, {1, 3, 5, 7, 9},N, and R

▶ the sequence in which elements are enumerated is of no concern, and
▶ repetitions among members of a set is of no concern either

It is possible to decide whether a given value is in the set.

Alice ̸∈ {Bob,Bill,Ben} and 7 ∈ {1, 3, 5, 7, 9}

The empty set containing no element is written {} or ∅.

The set concept (1)

A set (in mathematics) is a collection of element like

{Bob,Bill,Ben}, {1, 3, 5, 7, 9},N, and R

▶ the sequence in which elements are enumerated is of no concern, and
▶ repetitions among members of a set is of no concern either

It is possible to decide whether a given value is in the set.

Alice ̸∈ {Bob,Bill,Ben} and 7 ∈ {1, 3, 5, 7, 9}

The empty set containing no element is written {} or ∅.

The sets concept (2)

A set A is a subset of a set B, written A ⊆ B, if all the elements of A are also
elements of B, for example

{Ben,Bob} ⊆ {Bob,Bill,Ben} and {1, 3, 5, 7, 9} ⊆ N

Two sets A and B are equal, if they are both subsets of each other:

A = B if and only if A ⊆ B and B ⊆ A

i.e. two sets are equal if they contain exactly the same elements.

The subset of a set A which consists of those elements satisfying a predicate
p can be expressed using a set-comprehension:

{x ∈ A | p(x)}

For example:

{1, 3, 5, 7, 9} = {x ∈ N | odd(x) and x < 11}

The sets concept (2)

A set A is a subset of a set B, written A ⊆ B, if all the elements of A are also
elements of B, for example

{Ben,Bob} ⊆ {Bob,Bill,Ben} and {1, 3, 5, 7, 9} ⊆ N

Two sets A and B are equal, if they are both subsets of each other:

A = B if and only if A ⊆ B and B ⊆ A

i.e. two sets are equal if they contain exactly the same elements.

The subset of a set A which consists of those elements satisfying a predicate
p can be expressed using a set-comprehension:

{x ∈ A | p(x)}

For example:

{1, 3, 5, 7, 9} = {x ∈ N | odd(x) and x < 11}

The sets concept (2)

A set A is a subset of a set B, written A ⊆ B, if all the elements of A are also
elements of B, for example

{Ben,Bob} ⊆ {Bob,Bill,Ben} and {1, 3, 5, 7, 9} ⊆ N

Two sets A and B are equal, if they are both subsets of each other:

A = B if and only if A ⊆ B and B ⊆ A

i.e. two sets are equal if they contain exactly the same elements.

The subset of a set A which consists of those elements satisfying a predicate
p can be expressed using a set-comprehension:

{x ∈ A | p(x)}

For example:

{1, 3, 5, 7, 9} = {x ∈ N | odd(x) and x < 11}

The set concept (3)
Some standard operations on sets:

A ∪ B = {x | x ∈ A or x ∈ B} union
A ∩ B = {x | x ∈ A and x ∈ B} intersection
A \ B = {x ∈ A | x ̸∈ B} difference

A B A B A B

(a) A ∪ B (b) A ∩ B (c) A \ B

Figure: Venn diagrams for (a) union, (b) intersection and (c) difference

For example

{Bob,Bill,Ben} ∪ {Alice,Bill,Ann} = {Alice,Ann,Bob,Bill,Ben}
{Bob,Bill,Ben} ∩ {Alice,Bill,Ann} = {Bill}
{Bob,Bill,Ben} \ {Alice,Bill,Ann} = {Bob,Ben}

The set concept (3)
Some standard operations on sets:

A ∪ B = {x | x ∈ A or x ∈ B} union
A ∩ B = {x | x ∈ A and x ∈ B} intersection
A \ B = {x ∈ A | x ̸∈ B} difference

A B A B A B

(a) A ∪ B (b) A ∩ B (c) A \ B

Figure: Venn diagrams for (a) union, (b) intersection and (c) difference

For example

{Bob,Bill,Ben} ∪ {Alice,Bill,Ann} = {Alice,Ann,Bob,Bill,Ben}
{Bob,Bill,Ben} ∩ {Alice,Bill,Ann} = {Bill}
{Bob,Bill,Ben} \ {Alice,Bill,Ann} = {Bob,Ben}

Abstract Data Types

An abstract Data Type: A type together with a collection of operations, where
▶ the representation of values is hidden.

An abstract data type for sets must have:
▶ Operations to generate sets from the elements. Why?
▶ Operations to extract the elements of a set. Why?
▶ Standard operations on sets.

Abstract Data Types

An abstract Data Type: A type together with a collection of operations, where
▶ the representation of values is hidden.

An abstract data type for sets must have:
▶ Operations to generate sets from the elements. Why?
▶ Operations to extract the elements of a set. Why?
▶ Standard operations on sets.

Sets in F#

The Set library of F# supports finite sets. An efficient implementation is
based on a balanced binary tree.

Examples:

set ["Bob"; "Bill"; "Ben"];;
val it : Set<string> = set ["Ben"; "Bill"; "Bob"]

set [3; 1; 9; 5; 7; 9; 1];;
val it : Set<int> = set [1; 3; 5; 7; 9]

Equality of two sets is tested in the usual manner:

set["Bob";"Bill";"Ben"] = set["Bill";"Ben";"Bill";"Bob"];;
val it : bool = true

Sets are order on the basis of a lexicographical ordering:

compare (set ["Ann";"Jane"]) (set ["Bill";"Ben";"Bob"]);;
val it : int = -1

Selected operations (1)

▶ ofList: ’a list -> Set<’a>,
where ofList [a0; . . . ; an−1] = {a0; . . . ; an−1}

▶ toList: Set<’a> -> ’a list,
where toList {a0, . . . , an−1} = [a0; . . . ; an−1]

▶ add: ’a -> Set<’a> -> Set<’a>,
where add a A = {a} ∪ A

▶ remove: ’a -> Set<’a> -> Set<’a>,
where remove a A = A \ {a}

▶ contains: ’a -> Set<’a> -> bool,
where contains a A = a ∈ A

▶ minElement: Set<’a> -> ’a)
where minElement {a0, a1, . . . , an−2, an−1} = a0 when n > 0

Notice that minElement is well-defined due to the ordering:

Set.minElement (Set.ofList ["Bob"; "Bill"; "Ben"]);;
val it : string = "Ben"

Selected operations (1)

▶ ofList: ’a list -> Set<’a>,
where ofList [a0; . . . ; an−1] = {a0; . . . ; an−1}

▶ toList: Set<’a> -> ’a list,
where toList {a0, . . . , an−1} = [a0; . . . ; an−1]

▶ add: ’a -> Set<’a> -> Set<’a>,
where add a A = {a} ∪ A

▶ remove: ’a -> Set<’a> -> Set<’a>,
where remove a A = A \ {a}

▶ contains: ’a -> Set<’a> -> bool,
where contains a A = a ∈ A

▶ minElement: Set<’a> -> ’a)
where minElement {a0, a1, . . . , an−2, an−1} = a0 when n > 0

Notice that minElement is well-defined due to the ordering:

Set.minElement (Set.ofList ["Bob"; "Bill"; "Ben"]);;
val it : string = "Ben"

Selected operations (2)

▶ union: Set<’a> -> Set<’a> -> Set<’a>,
where union A B = A ∪ B

▶ intersect: Set<’a> -> Set<’a> -> Set<’a>,
where intersect A B = A ∩ B

▶ difference: Set<’a> -> Set<’a> -> Set<’a>,
where difference A B = A \ B

▶ exists: (’a -> bool) -> Set<’a> -> bool,
where exists p A = ∃x ∈ A.p(x)

▶ forall: (’a -> bool) -> Set<’a> -> bool,
where forall p A = ∀x ∈ A.p(x)

▶ fold: (’a -> ’b -> ’a) -> ’a -> Set<’b> -> ’a,
where

fold f a {b0, b1, . . . , bn−2, bn−1}
= f (f (f (· · · f (f (a, b0), b1), . . .), bn−2), bn−1)

These work similar to their List siblings, e.g.

Set.fold (-) 0 (set [1; 2; 3]) = ((0 − 1)− 2)− 3 = −6

where the ordering is exploited.

Selected operations (2)

▶ union: Set<’a> -> Set<’a> -> Set<’a>,
where union A B = A ∪ B

▶ intersect: Set<’a> -> Set<’a> -> Set<’a>,
where intersect A B = A ∩ B

▶ difference: Set<’a> -> Set<’a> -> Set<’a>,
where difference A B = A \ B

▶ exists: (’a -> bool) -> Set<’a> -> bool,
where exists p A = ∃x ∈ A.p(x)

▶ forall: (’a -> bool) -> Set<’a> -> bool,
where forall p A = ∀x ∈ A.p(x)

▶ fold: (’a -> ’b -> ’a) -> ’a -> Set<’b> -> ’a,
where

fold f a {b0, b1, . . . , bn−2, bn−1}
= f (f (f (· · · f (f (a, b0), b1), . . .), bn−2), bn−1)

These work similar to their List siblings, e.g.

Set.fold (-) 0 (set [1; 2; 3]) = ((0 − 1)− 2)− 3 = −6

where the ordering is exploited.

Example: Map Coloring (1)

Maps and colors are modelled in a more natural way using sets:

type country = string;;
type map = Set<country*country>;;
type color = Set<country>;;
type coloring = Set<color>;;

WHY?

Two countries c1, c2 are neighbors in a map m,
if either (c1, c2) ∈ m or (c2, c1) ∈ m:

let areNb c1 c2 m =
Set.contains (c1,c2) m || Set.contains (c2,c1) m;;

Color col and be extended by a country c given map m,
if for every country c′ in col : c and c′ are not neighbours in m

let canBeExtBy m col c =
Set.forall (fun c’ -> not (areNb c’ c m)) col;;

Example: Map Coloring (1)

Maps and colors are modelled in a more natural way using sets:

type country = string;;
type map = Set<country*country>;;
type color = Set<country>;;
type coloring = Set<color>;;

WHY?

Two countries c1, c2 are neighbors in a map m,
if either (c1, c2) ∈ m or (c2, c1) ∈ m:

let areNb c1 c2 m =
Set.contains (c1,c2) m || Set.contains (c2,c1) m;;

Color col and be extended by a country c given map m,
if for every country c′ in col : c and c′ are not neighbours in m

let canBeExtBy m col c =
Set.forall (fun c’ -> not (areNb c’ c m)) col;;

Example: Map Coloring (1)

Maps and colors are modelled in a more natural way using sets:

type country = string;;
type map = Set<country*country>;;
type color = Set<country>;;
type coloring = Set<color>;;

WHY?

Two countries c1, c2 are neighbors in a map m,
if either (c1, c2) ∈ m or (c2, c1) ∈ m:

let areNb c1 c2 m =
Set.contains (c1,c2) m || Set.contains (c2,c1) m;;

Color col and be extended by a country c given map m,
if for every country c′ in col : c and c′ are not neighbours in m

let canBeExtBy m col c =
Set.forall (fun c’ -> not (areNb c’ c m)) col;;

Example: Map Coloring (2)

The function

extColoring: map -> coloring -> country -> coloring

is declared as a recursive function over the coloring:

WHY not use a fold function?

let rec extColoring m cols c =
if Set.isEmpty cols
then Set.singleton (Set.singleton c)
else let col = Set.minElement cols

let cols’ = Set.remove col cols
if canBeExtBy m col c
then Set.add (Set.add c col) cols’
else Set.add col (extColoring m cols’ c);;

Notice similarity to a list recursion:
▶ base case [] corresponds to the empty set
▶ for a recursive case x::xs, the head x corresponds to the minimal

element col and the tail xs corresponds to the ”rests” set cols’

The list-based version is more efficient (why?) and more readable.

Example: Map Coloring (2)

The function

extColoring: map -> coloring -> country -> coloring

is declared as a recursive function over the coloring:

WHY not use a fold function?

let rec extColoring m cols c =
if Set.isEmpty cols
then Set.singleton (Set.singleton c)
else let col = Set.minElement cols

let cols’ = Set.remove col cols
if canBeExtBy m col c
then Set.add (Set.add c col) cols’
else Set.add col (extColoring m cols’ c);;

Notice similarity to a list recursion:
▶ base case [] corresponds to the empty set
▶ for a recursive case x::xs, the head x corresponds to the minimal

element col and the tail xs corresponds to the ”rests” set cols’

The list-based version is more efficient (why?) and more readable.

Example: Map Coloring (2)

The function

extColoring: map -> coloring -> country -> coloring

is declared as a recursive function over the coloring:

WHY not use a fold function?

let rec extColoring m cols c =
if Set.isEmpty cols
then Set.singleton (Set.singleton c)
else let col = Set.minElement cols

let cols’ = Set.remove col cols
if canBeExtBy m col c
then Set.add (Set.add c col) cols’
else Set.add col (extColoring m cols’ c);;

Notice similarity to a list recursion:
▶ base case [] corresponds to the empty set
▶ for a recursive case x::xs, the head x corresponds to the minimal

element col and the tail xs corresponds to the ”rests” set cols’

The list-based version is more efficient (why?) and more readable.

Example: Map Coloring (3)

A set of countries is obtained from a map by the function:

countries: map -> Set<country>

that is based on repeated insertion of the countries into a set:

let countries m =
Set.fold

(fun set (c1,c2) -> Set.add c1 (Set.add c2 set))
Set.empty
m;;

The function

colCntrs: map -> Set<country> -> coloring

is based on repeated insertion of countries in colorings using the
extColoring function:

let colCntrs m cs = Set.fold (extColoring m) Set.empty cs;;

Example: Map Coloring (3)

A set of countries is obtained from a map by the function:

countries: map -> Set<country>

that is based on repeated insertion of the countries into a set:

let countries m =
Set.fold

(fun set (c1,c2) -> Set.add c1 (Set.add c2 set))
Set.empty
m;;

The function

colCntrs: map -> Set<country> -> coloring

is based on repeated insertion of countries in colorings using the
extColoring function:

let colCntrs m cs = Set.fold (extColoring m) Set.empty cs;;

Example: Map Coloring (4)

The function that creates a coloring from a map is declared using functional
composition:

let colMap m = colCntrs m (countries m);;

let exMap = Set.ofList [("a","b"); ("c","d"); ("d","a")];;

colMap exMap;;
val it : Set<Set<string>>

= set [set ["a"; "c"]; set ["b"; "d"]]

The map concept
A map from a set A to a set B is a finite subset A′ of A together with a
function m defined on A′: m : A′ → B.
The set A′ is called the domain of m: dom m = A′.

A map m can be described in a tabular form:

a0 b0

a1 b1

...

an−1 bn−1

▶ An element ai in the set A′ is called a key
▶ A pair (ai , bi) is called an entry, and
▶ bi is called the value for the key ai .

We denote the sets of entries of a map as follows:

entriesOf(m) = {(a0, b0), . . . , (an−1, bn−1)}

Selected map operations in F#

▶ ofList: (’a*’b) list -> Map<’a,’b>
ofList [(a0, b0); . . . ; (an−1, bn−1)] = m

▶ add: ’a -> ’b -> Map<’a,’b> -> Map<’a,’b>
add a b m = m′, where m′ is obtained m by overriding m with the entry
(a, b)

▶ find: ’a -> Map<’a,’b> -> ’b
find a m = m(a), if a ∈ dom m;
otherwise an exception is raised

▶ tryFind: ’a -> Map<’a,’b> -> ’b option
tryFind a m = Some (m(a)), if a ∈ dom m; None otherwise

▶ foldBack: (’a->’b->’c->’c) -> Map<’a,’b> -> ’c -> ’c
foldBack f m c = f a0 b0 (f a1 b1 (f . . . (f an−1 bn−1 c) · · ·))

A few examples

let reg1 = Map.ofList [("a1",("cheese",25));
("a2",("herring",4));
("a3",("soft drink",5))];;

val reg1 : Map<string,(string * int)> =
map [("a1", ("cheese", 25)); ("a2", ("herring", 4));

("a3", ("soft drink", 5))]

An entry can be added to a map using add and the value for a key in a map
is retrieved using either find or tryFind:

let reg2 = Map.add "a4" ("bread", 6) reg1;;
val reg2 : Map<string,(string * int)> =

map [("a1", ("cheese", 25)); ("a2", ("herring", 4));
("a3", ("soft drink", 5)); ("a4", ("bread", 6))]

Map.find "a2" reg1;;
val it : string * int = ("herring", 4)

Map.tryFind "a2" reg1;;
val it : (string * int) option = Some ("herring", 4)

An example using Map.foldBack

We can extract the list of article codes and prices for a given register using
the fold functions for maps:

let reg1 = Map.ofList [("a1",("cheese",25));
("a2",("herring",4));
("a3",("soft drink",5))];;

Map.foldBack (fun ac (_,p) cps -> (ac,p)::cps) reg1 [];;
val it : (string * int) list =

[("a1", 25); ("a2", 4); ("a3", 5)]

This and other higher-order functions are similar to their List and Set siblings.

Example: Cash register (1)

type articleCode = string;;
type articleName = string;;
type noPieces = int;;
type price = int;;

type info = noPieces * articleName * price;;
type infoseq = info list;;
type bill = infoseq * price;;

The natural model of a register is using a map:

type register = Map<articleCode, articleName*price>;;

since an article code is a unique identification of an article.

First version:

type item = noPieces * articleCode;;
type purchase = item list;;

Example: Cash register (1)

type articleCode = string;;
type articleName = string;;
type noPieces = int;;
type price = int;;

type info = noPieces * articleName * price;;
type infoseq = info list;;
type bill = infoseq * price;;

The natural model of a register is using a map:

type register = Map<articleCode, articleName*price>;;

since an article code is a unique identification of an article.

First version:

type item = noPieces * articleCode;;
type purchase = item list;;

Example: Cash register (1) - a recursive program

exception FindArticle;;

(* makebill: register -> purchase -> bill *)
let rec makeBill reg = function

| [] -> ([],0)
| (np,ac)::pur ->

match Map.tryFind ac reg with
| None -> raise FindArticle
| Some(aname,aprice) ->

let tprice = np*aprice
let (infos,sumbill) = makeBill reg pur
((np,aname,tprice)::infos, tprice+sumbill);;

let pur = [(3,"a2"); (1,"a1")];;
makeBill reg1 pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

▶ the lookup in the register is managed by a Map.tryFind

Example: Cash register (1) - a recursive program

exception FindArticle;;

(* makebill: register -> purchase -> bill *)
let rec makeBill reg = function

| [] -> ([],0)
| (np,ac)::pur ->

match Map.tryFind ac reg with
| None -> raise FindArticle
| Some(aname,aprice) ->

let tprice = np*aprice
let (infos,sumbill) = makeBill reg pur
((np,aname,tprice)::infos, tprice+sumbill);;

let pur = [(3,"a2"); (1,"a1")];;
makeBill reg1 pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

▶ the lookup in the register is managed by a Map.tryFind

Example: Cash register (2) - using List.foldBack

let makeBill’ reg pur =
let f (np,ac) (infos,billprice)

= let (aname, aprice) = Map.find ac reg
let tprice = np*aprice
((np,aname,tprice)::infos, tprice+billprice)

List.foldBack f pur ([],0);;

makeBill’ reg1 pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

▶ the recursion is handled by List.foldBack
▶ the exception is handled by Map.find

Example: Cash register (2) - using List.foldBack

let makeBill’ reg pur =
let f (np,ac) (infos,billprice)

= let (aname, aprice) = Map.find ac reg
let tprice = np*aprice
((np,aname,tprice)::infos, tprice+billprice)

List.foldBack f pur ([],0);;

makeBill’ reg1 pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

▶ the recursion is handled by List.foldBack
▶ the exception is handled by Map.find

Example: Cash register (2) - using List.foldBack

let makeBill’ reg pur =
let f (np,ac) (infos,billprice)

= let (aname, aprice) = Map.find ac reg
let tprice = np*aprice
((np,aname,tprice)::infos, tprice+billprice)

List.foldBack f pur ([],0);;

makeBill’ reg1 pur;;
val it : (int * string * int) list * int =
([(3, "herring", 12); (1, "cheese", 25)], 37)

▶ the recursion is handled by List.foldBack
▶ the exception is handled by Map.find

Example: Cash register (2) - using maps for purchases

The purchase: 3 herrings, one piece of cheese, and 2 herrings, is the same
as a purchase of one piece of cheese and 5 herrings.

A purchase associated number of pieces with article codes:

type purchase = Map<articleCode,noPieces>;;

A bill is produced by folding a function over a map-purchase:

let makeBill’’ reg pur =
let f ac np (infos,billprice)

= let (aname, aprice) = Map.find ac reg
let tprice = np*aprice
((np,aname,tprice)::infos, tprice+billprice)

Map.foldBack f pur ([],0);;

let purMap = Map.ofList [("a2",3); ("a1",1)];;
val purMap : Map<string,int> = map [("a1", 1); ("a2", 3)]

makeBill’’ reg1 purMap;;
val it = ([(1, "cheese", 25); (3, "herring", 12)], 37)

Example: Cash register (2) - using maps for purchases

The purchase: 3 herrings, one piece of cheese, and 2 herrings, is the same
as a purchase of one piece of cheese and 5 herrings.

A purchase associated number of pieces with article codes:

type purchase = Map<articleCode,noPieces>;;

A bill is produced by folding a function over a map-purchase:

let makeBill’’ reg pur =
let f ac np (infos,billprice)

= let (aname, aprice) = Map.find ac reg
let tprice = np*aprice
((np,aname,tprice)::infos, tprice+billprice)

Map.foldBack f pur ([],0);;

let purMap = Map.ofList [("a2",3); ("a1",1)];;
val purMap : Map<string,int> = map [("a1", 1); ("a2", 3)]

makeBill’’ reg1 purMap;;
val it = ([(1, "cheese", 25); (3, "herring", 12)], 37)

Example: Cash register (2) - using maps for purchases

The purchase: 3 herrings, one piece of cheese, and 2 herrings, is the same
as a purchase of one piece of cheese and 5 herrings.

A purchase associated number of pieces with article codes:

type purchase = Map<articleCode,noPieces>;;

A bill is produced by folding a function over a map-purchase:

let makeBill’’ reg pur =
let f ac np (infos,billprice)

= let (aname, aprice) = Map.find ac reg
let tprice = np*aprice
((np,aname,tprice)::infos, tprice+billprice)

Map.foldBack f pur ([],0);;

let purMap = Map.ofList [("a2",3); ("a1",1)];;
val purMap : Map<string,int> = map [("a1", 1); ("a2", 3)]

makeBill’’ reg1 purMap;;
val it = ([(1, "cheese", 25); (3, "herring", 12)], 37)

Summary

▶ The concepts of sets and maps.
▶ Fundamental operations on sets and maps.
▶ Applications of sets and maps.

