
ITT8060: Advanced Programming (in F#)
Lecture 6: Recursive data types

Hendrik Maarand, Juhan Ernits and Ian Erik Varatalu
based on slides by Michael R. Hansen

Department of Software Science, Tallinn University of Technology

12/10/2023

Overview

Finite Trees
▶ Algebraic Datatypes.

▶ Non-recursive type declarations: Discriminated union (Lecture 4)
▶ Recursive type declarations: Finite trees

▶ Recursions following the structure of trees
▶ Illustrative examples:

▶ Search trees
▶ Expression trees
▶ File systems
▶ . . .

▶ Mutual recursion, layered pattern, polymorphic type declarations

Overview

Finite Trees
▶ Algebraic Datatypes.

▶ Non-recursive type declarations: Discriminated union (Lecture 4)
▶ Recursive type declarations: Finite trees

▶ Recursions following the structure of trees
▶ Illustrative examples:

▶ Search trees
▶ Expression trees
▶ File systems
▶ . . .

▶ Mutual recursion, layered pattern, polymorphic type declarations

Overview

Finite Trees
▶ Algebraic Datatypes.

▶ Non-recursive type declarations: Discriminated union (Lecture 4)
▶ Recursive type declarations: Finite trees

▶ Recursions following the structure of trees
▶ Illustrative examples:

▶ Search trees
▶ Expression trees
▶ File systems
▶ . . .

▶ Mutual recursion, layered pattern, polymorphic type declarations

Overview

Finite Trees
▶ Algebraic Datatypes.

▶ Non-recursive type declarations: Discriminated union (Lecture 4)
▶ Recursive type declarations: Finite trees

▶ Recursions following the structure of trees
▶ Illustrative examples:

▶ Search trees
▶ Expression trees
▶ File systems
▶ . . .

▶ Mutual recursion, layered pattern, polymorphic type declarations

Finite trees

A finite tree is a value which may contain a subcomponent of the same type.

Example: A binary search tree

aaaaaaa

!!!!!!!

"
"

"
""

b
b
b
bb

�
�

�

\
\
\

"
"

"
""

b
b

b
bb

%
%

%

\
\
\

%
%

%

\
\
\

Br

Br Br

Br Lf Br Br

Lf 2 Lf

7

Lf 13 Lf Lf 25 Lf

21

9

Condition: for every node containing the value x : every value in the left subtree is smaller then x ,
and every value in the right subtree is greater than x .

Finite trees

A finite tree is a value which may contain a subcomponent of the same type.

Example: A binary search tree

aaaaaaa

!!!!!!!

"
"

"
""

b
b

b
bb

�
�

�

\
\
\

"
"

"
""

b
b

b
bb

%
%

%

\
\
\

%
%

%

\
\
\

Br

Br Br

Br Lf Br Br

Lf 2 Lf

7

Lf 13 Lf Lf 25 Lf

21

9

Condition: for every node containing the value x : every value in the left subtree is smaller then x ,
and every value in the right subtree is greater than x .

Example: Binary Trees
A recursive datatype is used to represent values which are trees.

type Tree = Lf
| Br of Tree*int*Tree;;

Lf;;
val it : Tree = Lf

Br;;
val it : Tree * int * Tree -> Tree = <fun:clo@4>

The two parts in the declaration are rules for generating trees:
▶ Lf is a tree
▶ if t1, t2 are trees, n is an integer, then Br(t1, n, t2) is a tree.

The tree from the previous slide is denoted by:

Br(Br(Br(Lf,2,Lf),7,Lf),
9,
Br(Br(Lf,13,Lf),21,Br(Lf,25,Lf)))

Example: Binary Trees
A recursive datatype is used to represent values which are trees.

type Tree = Lf
| Br of Tree*int*Tree;;

Lf;;
val it : Tree = Lf

Br;;
val it : Tree * int * Tree -> Tree = <fun:clo@4>

The two parts in the declaration are rules for generating trees:
▶ Lf is a tree
▶ if t1, t2 are trees, n is an integer, then Br(t1, n, t2) is a tree.

The tree from the previous slide is denoted by:

Br(Br(Br(Lf,2,Lf),7,Lf),
9,
Br(Br(Lf,13,Lf),21,Br(Lf,25,Lf)))

Example: Binary Trees
A recursive datatype is used to represent values which are trees.

type Tree = Lf
| Br of Tree*int*Tree;;

Lf;;
val it : Tree = Lf

Br;;
val it : Tree * int * Tree -> Tree = <fun:clo@4>

The two parts in the declaration are rules for generating trees:
▶ Lf is a tree
▶ if t1, t2 are trees, n is an integer, then Br(t1, n, t2) is a tree.

The tree from the previous slide is denoted by:

Br(Br(Br(Lf,2,Lf),7,Lf),
9,
Br(Br(Lf,13,Lf),21,Br(Lf,25,Lf)))

Binary search trees: Insertion

▶ Recursion on the structure of trees
▶ Constructors Lf and Br are used in patterns
▶ The search tree condition is an invariant for insert

let rec insert i tree = match tree with
| Lf -> Br(Lf,i,Lf)
| Br(t1,j,t2) as tr ->

match compare i j with
| 0 -> tr
| n when n<0 -> Br(insert i t1 , j, t2)
| _ -> Br(t1,j, insert i t2);;

val insert : int -> Tree -> Tree

Example:

let t1 = Br(Lf, 3, Br(Lf, 5, Lf));;
let t2 = insert 4 t1;;
val t2 : Tree = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

Binary search trees: Insertion

▶ Recursion on the structure of trees
▶ Constructors Lf and Br are used in patterns
▶ The search tree condition is an invariant for insert

let rec insert i tree = match tree with
| Lf -> Br(Lf,i,Lf)
| Br(t1,j,t2) as tr ->

match compare i j with
| 0 -> tr
| n when n<0 -> Br(insert i t1 , j, t2)
| _ -> Br(t1,j, insert i t2);;

val insert : int -> Tree -> Tree

Example:

let t1 = Br(Lf, 3, Br(Lf, 5, Lf));;
let t2 = insert 4 t1;;
val t2 : Tree = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

Binary search trees: Insertion

▶ Recursion on the structure of trees
▶ Constructors Lf and Br are used in patterns
▶ The search tree condition is an invariant for insert

let rec insert i tree = match tree with
| Lf -> Br(Lf,i,Lf)
| Br(t1,j,t2) as tr ->

match compare i j with
| 0 -> tr
| n when n<0 -> Br(insert i t1 , j, t2)
| _ -> Br(t1,j, insert i t2);;

val insert : int -> Tree -> Tree

Example:

let t1 = Br(Lf, 3, Br(Lf, 5, Lf));;
let t2 = insert 4 t1;;
val t2 : Tree = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

Binary search trees: member and inOrder traversal

let rec memberOf i tree = match tree with
| Lf -> false
| Br(t1,j,t2) -> match compare i j with

| 0 -> true
| n when n<0 -> memberOf i t1
| _ -> memberOf i t2;;

val memberOf : int -> Tree -> bool

In-order traversal

let rec inOrder tree = match tree with
| Lf -> []
| Br(t1,j,t2) -> inOrder t1 @ [j] @ inOrder t2;;

val toList : Tree -> int list

gives a sorted list

inOrder(Br(Br(Lf,1,Lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));;
val it : int list = [1; 3; 4; 5]

Binary search trees: member and inOrder traversal

let rec memberOf i tree = match tree with
| Lf -> false
| Br(t1,j,t2) -> match compare i j with

| 0 -> true
| n when n<0 -> memberOf i t1
| _ -> memberOf i t2;;

val memberOf : int -> Tree -> bool

In-order traversal

let rec inOrder tree = match tree with
| Lf -> []
| Br(t1,j,t2) -> inOrder t1 @ [j] @ inOrder t2;;

val toList : Tree -> int list

gives a sorted list

inOrder(Br(Br(Lf,1,Lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));;
val it : int list = [1; 3; 4; 5]

Binary search trees: member and inOrder traversal

let rec memberOf i tree = match tree with
| Lf -> false
| Br(t1,j,t2) -> match compare i j with

| 0 -> true
| n when n<0 -> memberOf i t1
| _ -> memberOf i t2;;

val memberOf : int -> Tree -> bool

In-order traversal

let rec inOrder tree = match tree with
| Lf -> []
| Br(t1,j,t2) -> inOrder t1 @ [j] @ inOrder t2;;

val toList : Tree -> int list

gives a sorted list

inOrder(Br(Br(Lf,1,Lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));;
val it : int list = [1; 3; 4; 5]

Deletions in search trees

Delete minimal element in a search tree: Tree -> int * Tree

let rec delMin tree = match tree with
| Br(Lf,i,t2) -> (i,t2)
| Br(t1,i,t2) -> let (m,t1’) = delMin t1

(m, Br(t1’,i,t2));;

Delete element in a search tree: int -> Tree -> Tree

let rec delete j tree = match tree with
| Lf -> Lf
| Br(t1,i,t2) ->

match compare i j with
| n when n<0 -> Br(t1,i,delete j t2)
| n when n>0 -> Br(delete j t1,i,t2)
| _ ->

match t2 with
| Lf -> t1
| _ -> let (m,t2’) = delMin t2

Br(t1,m,t2’);;

Deletions in search trees

Delete minimal element in a search tree: Tree -> int * Tree

let rec delMin tree = match tree with
| Br(Lf,i,t2) -> (i,t2)
| Br(t1,i,t2) -> let (m,t1’) = delMin t1

(m, Br(t1’,i,t2));;

Delete element in a search tree: int -> Tree -> Tree

let rec delete j tree = match tree with
| Lf -> Lf
| Br(t1,i,t2) ->

match compare i j with
| n when n<0 -> Br(t1,i,delete j t2)
| n when n>0 -> Br(delete j t1,i,t2)
| _ ->

match t2 with
| Lf -> t1
| _ -> let (m,t2’) = delMin t2

Br(t1,m,t2’);;

Parameterize type declarations
The programs on search trees just requires an ordering on elements – they do not need to be
integers.

A polymorphic tree type is declared as follows:

type Tree<’a> = Lf | Br of Tree<’a> * ’a * Tree<’a>;;

Program texts are unchanged (though polymorphic now), for example

let rec insert i tree = match tree with
....

| Br(t1,j,t2) as tr -> match compare i j with
.... ;;

val insert: ’a -> Tree<’a> -> Tree<’a> when ’a: comparison

let ti = insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

let ts = insert "4" (Br(Lf, "3", Br(Lf, "5", Lf)));;
val ts : Tree<string>

= Br (Lf,"3",Br (Br (Lf,"4",Lf),"5",Lf))

Parameterize type declarations
The programs on search trees just requires an ordering on elements – they do not need to be
integers.

A polymorphic tree type is declared as follows:

type Tree<’a> = Lf | Br of Tree<’a> * ’a * Tree<’a>;;

Program texts are unchanged (though polymorphic now), for example

let rec insert i tree = match tree with
....

| Br(t1,j,t2) as tr -> match compare i j with
.... ;;

val insert: ’a -> Tree<’a> -> Tree<’a> when ’a: comparison

let ti = insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

let ts = insert "4" (Br(Lf, "3", Br(Lf, "5", Lf)));;
val ts : Tree<string>

= Br (Lf,"3",Br (Br (Lf,"4",Lf),"5",Lf))

Parameterize type declarations
The programs on search trees just requires an ordering on elements – they do not need to be
integers.

A polymorphic tree type is declared as follows:

type Tree<’a> = Lf | Br of Tree<’a> * ’a * Tree<’a>;;

Program texts are unchanged (though polymorphic now), for example

let rec insert i tree = match tree with
....

| Br(t1,j,t2) as tr -> match compare i j with
.... ;;

val insert: ’a -> Tree<’a> -> Tree<’a> when ’a: comparison

let ti = insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

let ts = insert "4" (Br(Lf, "3", Br(Lf, "5", Lf)));;
val ts : Tree<string>

= Br (Lf,"3",Br (Br (Lf,"4",Lf),"5",Lf))

Parameterize type declarations
The programs on search trees just requires an ordering on elements – they do not need to be
integers.

A polymorphic tree type is declared as follows:

type Tree<’a> = Lf | Br of Tree<’a> * ’a * Tree<’a>;;

Program texts are unchanged (though polymorphic now), for example

let rec insert i tree = match tree with
....

| Br(t1,j,t2) as tr -> match compare i j with
.... ;;

val insert: ’a -> Tree<’a> -> Tree<’a> when ’a: comparison

let ti = insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

let ts = insert "4" (Br(Lf, "3", Br(Lf, "5", Lf)));;
val ts : Tree<string>

= Br (Lf,"3",Br (Br (Lf,"4",Lf),"5",Lf))

Parameterize type declarations
The programs on search trees just requires an ordering on elements – they do not need to be
integers.

A polymorphic tree type is declared as follows:

type Tree<’a> = Lf | Br of Tree<’a> * ’a * Tree<’a>;;

Program texts are unchanged (though polymorphic now), for example

let rec insert i tree = match tree with
....

| Br(t1,j,t2) as tr -> match compare i j with
.... ;;

val insert: ’a -> Tree<’a> -> Tree<’a> when ’a: comparison

let ti = insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))

let ts = insert "4" (Br(Lf, "3", Br(Lf, "5", Lf)));;
val ts : Tree<string>

= Br (Lf,"3",Br (Br (Lf,"4",Lf),"5",Lf))

Higher-order functions for tree traversals
For example

let rec inFoldBack f t e =
match t with
| Lf -> e
| Br(t1,x,t2) -> let er = inFoldBack f t2 e

inFoldBack f t1 (f x er);;
val inFoldBack: (’a -> ’b -> ’b) -> Tree<’a> -> ’b -> ’b

satisfies
inFoldBack f t e = List.foldBack f (inOrder t) e

It traverses the tree without building the list- For example:

let ta = Br(Br(Br(Lf,-3,Lf),0,Br(Lf,2,Lf)),5,Br(Lf,7,Lf));;

inOrder ta;;
val it : int list = [-3; 0; 2; 5; 7]

inFoldBack (-) ta 0;;
val it : int = 1

Higher-order functions for tree traversals
For example

let rec inFoldBack f t e =
match t with
| Lf -> e
| Br(t1,x,t2) -> let er = inFoldBack f t2 e

inFoldBack f t1 (f x er);;
val inFoldBack: (’a -> ’b -> ’b) -> Tree<’a> -> ’b -> ’b

satisfies
inFoldBack f t e = List.foldBack f (inOrder t) e

It traverses the tree without building the list- For example:

let ta = Br(Br(Br(Lf,-3,Lf),0,Br(Lf,2,Lf)),5,Br(Lf,7,Lf));;

inOrder ta;;
val it : int list = [-3; 0; 2; 5; 7]

inFoldBack (-) ta 0;;
val it : int = 1

Example: Expression Trees

type Fexpr =
| Const of float
| X
| Add of Fexpr * Fexpr
| Sub of Fexpr * Fexpr
| Mul of Fexpr * Fexpr
| Div of Fexpr * Fexpr;;

Defines 6 constructors:
▶ Const: float -> Fexpr

▶ X : Fexpr

▶ Add: Fexpr * Fexpr -> Fexpr

▶ Sub: Fexpr * Fexpr -> Fexpr

▶ Mul: Fexpr * Fexpr -> Fexpr

▶ Div: Fexpr * Fexpr -> Fexpr

Example: Expression Trees

type Fexpr =
| Const of float
| X
| Add of Fexpr * Fexpr
| Sub of Fexpr * Fexpr
| Mul of Fexpr * Fexpr
| Div of Fexpr * Fexpr;;

Defines 6 constructors:
▶ Const: float -> Fexpr

▶ X : Fexpr

▶ Add: Fexpr * Fexpr -> Fexpr

▶ Sub: Fexpr * Fexpr -> Fexpr

▶ Mul: Fexpr * Fexpr -> Fexpr

▶ Div: Fexpr * Fexpr -> Fexpr

Symbolic Differentiation D: Fexpr -> Fexpr

A classic example in functional programming:

let rec D expr = match expr with
| Const _ -> Const 0.0
| X -> Const 1.0
| Add(fe1,fe2) -> Add(D fe1,D fe2)
| Sub(fe1,fe2) -> Sub(D fe1,D fe2)
| Mul(fe1,fe2) -> Add(Mul(D fe1,fe2),Mul(fe1,D fe2))
| Div(fe1,fe2) -> Div(

Sub(Mul(D fe1,fe2),Mul(fe1,D fe2)),
Mul(fe2,fe2));;

Notice the direct correspondence with the rules of differentiation.

Can be tried out directly, as tree are ”just” values, for example:

D(Add(Mul(Const 3.0, X), Mul(X, X)));;
val it : Fexpr =

Add
(Add (Mul (Const 0.0,X),Mul (Const 3.0,Const 1.0)),
Add (Mul (Const 1.0,X),Mul (X,Const 1.0)))

Symbolic Differentiation D: Fexpr -> Fexpr

A classic example in functional programming:

let rec D expr = match expr with
| Const _ -> Const 0.0
| X -> Const 1.0
| Add(fe1,fe2) -> Add(D fe1,D fe2)
| Sub(fe1,fe2) -> Sub(D fe1,D fe2)
| Mul(fe1,fe2) -> Add(Mul(D fe1,fe2),Mul(fe1,D fe2))
| Div(fe1,fe2) -> Div(

Sub(Mul(D fe1,fe2),Mul(fe1,D fe2)),
Mul(fe2,fe2));;

Notice the direct correspondence with the rules of differentiation.

Can be tried out directly, as tree are ”just” values, for example:

D(Add(Mul(Const 3.0, X), Mul(X, X)));;
val it : Fexpr =

Add
(Add (Mul (Const 0.0,X),Mul (Const 3.0,Const 1.0)),
Add (Mul (Const 1.0,X),Mul (X,Const 1.0)))

Expressions: Computation of values

Given a value (a float) for X, then every expression denote a float.

compute : float -> Fexpr -> float

let rec compute x expr = match expr with
| Const r -> r
| X -> x
| Add(fe1,fe2) -> compute x fe1 + compute x fe2
| Sub(fe1,fe2) -> compute x fe1 - compute x fe2
| Mul(fe1,fe2) -> compute x fe1 * compute x fe2
| Div(fe1,fe2) -> compute x fe1 / compute x fe2;;

Example:

compute 4.0 (Mul(X, Add(Const 2.0, X)));;
val it : float = 24.0

Expressions: Computation of values

Given a value (a float) for X, then every expression denote a float.

compute : float -> Fexpr -> float

let rec compute x expr = match expr with
| Const r -> r
| X -> x
| Add(fe1,fe2) -> compute x fe1 + compute x fe2
| Sub(fe1,fe2) -> compute x fe1 - compute x fe2
| Mul(fe1,fe2) -> compute x fe1 * compute x fe2
| Div(fe1,fe2) -> compute x fe1 / compute x fe2;;

Example:

compute 4.0 (Mul(X, Add(Const 2.0, X)));;
val it : float = 24.0

Expressions: Computation of values

Given a value (a float) for X, then every expression denote a float.

compute : float -> Fexpr -> float

let rec compute x expr = match expr with
| Const r -> r
| X -> x
| Add(fe1,fe2) -> compute x fe1 + compute x fe2
| Sub(fe1,fe2) -> compute x fe1 - compute x fe2
| Mul(fe1,fe2) -> compute x fe1 * compute x fe2
| Div(fe1,fe2) -> compute x fe1 / compute x fe2;;

Example:

compute 4.0 (Mul(X, Add(Const 2.0, X)));;
val it : float = 24.0

Mutual recursion. Example: File system

d1

a1 d2 a4 d3

a5a2 d3

a3

▶ A file system is a list of elements
▶ an element is a file or a directory, which is a named file system

Mutually recursive type declarations

▶ are combined using and

type FileSys = Element list
and Element =

| File of string
| Dir of string * FileSys

let d1 =
Dir("d1",[File "a1";

Dir("d2", [File "a2";
Dir("d3", [File "a3"])]);

File "a4";
Dir("d3", [File "a5"])

])

The type of d1 is ?

Mutually recursive type declarations

▶ are combined using and

type FileSys = Element list
and Element =

| File of string
| Dir of string * FileSys

let d1 =
Dir("d1",[File "a1";

Dir("d2", [File "a2";
Dir("d3", [File "a3"])]);

File "a4";
Dir("d3", [File "a5"])

])

The type of d1 is ?

Mutually recursive type declarations

▶ are combined using and

type FileSys = Element list
and Element =

| File of string
| Dir of string * FileSys

let d1 =
Dir("d1",[File "a1";

Dir("d2", [File "a2";
Dir("d3", [File "a3"])]);

File "a4";
Dir("d3", [File "a5"])

])

The type of d1 is ?

Mutually recursive function declarations

▶ are combined using and

Example: extract the names occurring in file systems and elements.

let rec namesFileSys fs = match fs with
| [] -> []
| e::es -> (namesElement e) @ (namesFileSys es)

and namesElement el = match el with
| File s -> [s]
| Dir(s,fs) -> s :: (namesFileSys fs) ;;

val namesFileSys : Element list -> string list
val namesElement : Element -> string list

namesElement d1 ;;
val it : string list = ["d1"; "a1"; "d2"; "a2";

"d3"; "a3"; "a4"; "d3"; "a5"]

Mutually recursive function declarations

▶ are combined using and

Example: extract the names occurring in file systems and elements.

let rec namesFileSys fs = match fs with
| [] -> []
| e::es -> (namesElement e) @ (namesFileSys es)

and namesElement el = match el with
| File s -> [s]
| Dir(s,fs) -> s :: (namesFileSys fs) ;;

val namesFileSys : Element list -> string list
val namesElement : Element -> string list

namesElement d1 ;;
val it : string list = ["d1"; "a1"; "d2"; "a2";

"d3"; "a3"; "a4"; "d3"; "a5"]

Summary

Finite Trees
▶ concepts
▶ illustrative examples

Notice the strength of having trees as values.

Notice that polymorphic types and mutual recursion are NOT biased to trees.

Summary

Finite Trees
▶ concepts
▶ illustrative examples

Notice the strength of having trees as values.

Notice that polymorphic types and mutual recursion are NOT biased to trees.

Summary

Finite Trees
▶ concepts
▶ illustrative examples

Notice the strength of having trees as values.

Notice that polymorphic types and mutual recursion are NOT biased to trees.

