ITT8060: Advanced Programming (in F#) Lecture 6: Recursive data types

Hendrik Maarand, Juhan Ernits and Ian Erik Varatalu based on slides by Michael R. Hansen

Department of Software Science, Tallinn University of Technology

12/10/2023

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Finite Trees

- Algebraic Datatypes.
 - Non-recursive type declarations: Discriminated union (Lecture 4)
 - Recursive type declarations: Finite trees
- Recursions following the structure of trees

Illustrative examples:

- Search trees
- Expression trees
- File systems
- ▶
- Mutual recursion, layered pattern, polymorphic type declarations

Finite Trees

- Algebraic Datatypes.
 - Non-recursive type declarations: Discriminated union (Lecture 4)
 - Recursive type declarations: Finite trees

Recursions following the structure of trees

Illustrative examples:

- Search trees
- Expression trees
- File systems
- ▶ ...
- Mutual recursion, layered pattern, polymorphic type declarations

Finite Trees

- Algebraic Datatypes.
 - Non-recursive type declarations: Discriminated union (Lecture 4)
 - Recursive type declarations: Finite trees
- Recursions following the structure of trees
- Illustrative examples:
 - Search trees
 - Expression trees
 - File systems
 - ▶ ...

Mutual recursion, layered pattern, polymorphic type declarations

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の Q ()

Finite Trees

- Algebraic Datatypes.
 - Non-recursive type declarations: Discriminated union (Lecture 4)
 - Recursive type declarations: Finite trees
- Recursions following the structure of trees
- Illustrative examples:
 - Search trees
 - Expression trees
 - File systems
 - ▶ ...
- Mutual recursion, layered pattern, polymorphic type declarations

Finite trees

A *finite tree* is a value which may contain a subcomponent of the same type.

Example: A binary search tree

Condition: for every node containing the value x: every value in the left subtree is smaller then x, and every value in the right subtree is greater than x.

Finite trees

A *finite tree* is a value which may contain a subcomponent of the same type.

Example: A binary search tree

Condition: for every node containing the value x: every value in the left subtree is smaller then x, and every value in the right subtree is greater than x.

Example: Binary Trees

A recursive datatype is used to represent values which are trees.

The two parts in the declaration are rules for generating trees:

- Lf is a tree
- ▶ if t_1, t_2 are trees, *n* is an integer, then $Br(t_1, n, t_2)$ is a tree.

The tree from the previous slide is denoted by:

```
Br (Br (Br (Lf, 2, Lf), 7, Lf),
9,
Br (Br (Lf, 13, Lf), 21, Br (Lf, 25, Lf)))
```

Example: Binary Trees

A recursive datatype is used to represent values which are trees.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

The two parts in the declaration are rules for generating trees:

- Lf is a tree
- ▶ if t_1, t_2 are trees, *n* is an integer, then $Br(t_1, n, t_2)$ is a tree.

The tree from the previous slide is denoted by:

```
3r (Br (Br (Lf, 2, Lf), 7, Lf),
9,
Br (Br (Lf, 13, Lf), 21, Br (Lf, 25, Lf)))
```

Example: Binary Trees

A recursive datatype is used to represent values which are trees.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

The two parts in the declaration are rules for generating trees:

- Lf is a tree
- ▶ if t_1, t_2 are trees, *n* is an integer, then $Br(t_1, n, t_2)$ is a tree.

The tree from the previous slide is denoted by:

```
Br(Br(Lf,2,Lf),7,Lf),
9,
Br(Br(Lf,13,Lf),21,Br(Lf,25,Lf)))
```

Binary search trees: Insertion

- Recursion on the structure of trees
- Constructors Lf and Br are used in patterns
- The search tree condition is an invariant for insert

```
let t1 = Br(Lf, 3, Br(Lf, 5, Lf));;
let t2 = insert 4 t1;;
val t2 : Tree = Br (Lf, 3, Br (Br (Lf, 4, Lf), 5, Lf))
```

Binary search trees: Insertion

- Recursion on the structure of trees
- Constructors Lf and Br are used in patterns
- The search tree condition is an invariant for insert

```
let t1 = Br(Lf, 3, Br(Lf, 5, Lf));;
let t2 = insert 4 t1;;
val t2 : Tree = Br (Lf, 3, Br (Br (Lf, 4, Lf), 5, Lf))
```

Binary search trees: Insertion

- Recursion on the structure of trees
- Constructors Lf and Br are used in patterns
- The search tree condition is an invariant for insert

```
let t1 = Br(Lf, 3, Br(Lf, 5, Lf));;
let t2 = insert 4 t1;;
val t2 : Tree = Br (Lf, 3, Br (Br (Lf, 4, Lf), 5, Lf))
```

Binary search trees: member and inOrder traversal

In-order traversal

```
let rec inOrder tree = match tree with
    Lf          -> []
    Br(t1,j,t2) -> inOrder t1 @ [j] @ inOrder t2;;
```

val toList : Tree -> int list

gives a sorted list

```
inOrder(Br(Br(Lf,1,Lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));;
val it : int list = [1; 3; 4; 5]
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ��や

Binary search trees: member and inOrder traversal

In-order traversal

```
val toList : Tree -> int list
```

gives a sorted list

```
inOrder(Br(Br(Lf,1,Lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));;
val it : int list = [1; 3; 4; 5]
```

Binary search trees: member and inOrder traversal

In-order traversal

```
let rec inOrder tree = match tree with
    Lf          -> []
    Br(t1,j,t2) -> inOrder t1 @ [j] @ inOrder t2;;
```

```
val toList : Tree -> int list
```

gives a sorted list

```
inOrder(Br(Br(Lf,1,Lf), 3, Br(Br(Lf,4,Lf), 5, Lf)));;
val it : int list = [1; 3; 4; 5]
```

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Deletions in search trees

Delete minimal element in a search tree: Tree -> int * Tree

Delete element in a search tree: int -> Tree -> Tree

Deletions in search trees

Delete minimal element in a search tree: Tree -> int * Tree

Delete element in a search tree: int -> Tree -> Tree

The programs on search trees just requires an ordering on elements – they do not need to be integers.

A polymorphic tree type is declared as follows:

```
type Tree<'a> = Lf | Br of Tree<'a> * 'a * Tree<'a>;;
```

Program texts are unchanged (though polymorphic now), for example

The programs on search trees just requires an ordering on elements – they do not need to be integers.

A polymorphic tree type is declared as follows:

```
type Tree<'a> = Lf | Br of Tree<'a> * 'a * Tree<'a>;;
```

Program texts are unchanged (though polymorphic now), for example

The programs on search trees just requires an ordering on elements – they do not need to be integers.

A polymorphic tree type is declared as follows:

```
type Tree<'a> = Lf | Br of Tree<'a> * 'a * Tree<'a>;;
```

Program texts are unchanged (though polymorphic now), for example

```
let rec insert i tree = match tree with
       . . . .
  | Br(t1, j, t2) as tr -> match compare i j with
       val insert: 'a -> Tree<'a> -> Tree<'a> when 'a: comparison
```

The programs on search trees just requires an ordering on elements – they do not need to be integers.

A polymorphic tree type is declared as follows:

```
type Tree<'a> = Lf | Br of Tree<'a> * 'a * Tree<'a>;;
```

Program texts are unchanged (though polymorphic now), for example

```
let rec insert i tree = match tree with
      . . . .
  | Br(t1, j, t2) as tr -> match compare i j with
      val insert: 'a -> Tree<'a> -> Tree<'a> when 'a: comparison
let ti = insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf, 3, Br (Br (Lf, 4, Lf), 5, Lf))
```

The programs on search trees just requires an ordering on elements – they do not need to be integers.

A polymorphic tree type is declared as follows:

```
type Tree<'a> = Lf | Br of Tree<'a> * 'a * Tree<'a>;;
```

Program texts are unchanged (though polymorphic now), for example

```
let rec insert i tree = match tree with
       . . . .
  | Br(t1, j, t2) as tr -> match compare i j with
      val insert: 'a -> Tree<'a> -> Tree<'a> when 'a: comparison
let ti = insert 4 (Br(Lf, 3, Br(Lf, 5, Lf)));;
val ti : Tree<int> = Br (Lf,3,Br (Br (Lf,4,Lf),5,Lf))
let ts = insert "4" (Br(Lf, "3", Br(Lf, "5", Lf)));;
val ts : Tree<string>
      = Br (Lf, "3", Br (Br (Lf, "4", Lf), "5", Lf))
```

Higher-order functions for tree traversals

For example

inFoldBack f t e = List.foldBack f (inOrder t) e

It traverses the tree without building the list- For example:

```
let ta = Br(Br(Br(Lf,-3,Lf),0,Br(Lf,2,Lf)),5,Br(Lf,7,Lf));;
```

```
inOrder ta;;
val it : int list = [-3; 0; 2; 5; 7]
inFoldBack (-) ta 0;;
```

```
val it : int = 1
```

Higher-order functions for tree traversals

For example

```
inFoldBack f t e = List.foldBack f (inOrder t) e
```

It traverses the tree without building the list- For example:

```
let ta = Br(Br(Br(Lf,-3,Lf),0,Br(Lf,2,Lf)),5,Br(Lf,7,Lf));;
```

```
inOrder ta;;
val it : int list = [-3; 0; 2; 5; 7]
inFoldBack (-) ta 0;;
val it : int = 1
```

Example: Expression Trees

```
type Fexpr =
    | Const of float
    | X
    | Add of Fexpr * Fexpr
    | Sub of Fexpr * Fexpr
    | Mul of Fexpr * Fexpr
    | Div of Fexpr * Fexpr;;
```

Defines 6 constructors:

- Const: float -> Fexpr
- ▶ X : Fexpr
- Add: Fexpr * Fexpr -> Fexpr
- Sub: Fexpr * Fexpr -> Fexpr
- Mul: Fexpr * Fexpr -> Fexpr
- Div: Fexpr * Fexpr -> Fexpr

Example: Expression Trees

```
type Fexpr =
   | Const of float
   | X
   | Add of Fexpr * Fexpr
   | Sub of Fexpr * Fexpr
   | Mul of Fexpr * Fexpr
   | Div of Fexpr * Fexpr;;
```

Defines 6 constructors:

- Const: float -> Fexpr
- X : Fexpr
- Add: Fexpr * Fexpr -> Fexpr
- Sub: Fexpr * Fexpr -> Fexpr
- Mul: Fexpr * Fexpr -> Fexpr
- Div: Fexpr * Fexpr -> Fexpr

Symbolic Differentiation D: Fexpr -> Fexpr

A classic example in functional programming:

Notice the direct correspondence with the rules of differentiation.

Can be tried out directly, as tree are "just" values, for example:

```
D(Add(Mul(Const 3.0, X), Mul(X, X)));;

val it : Fexpr =

Add

(Add (Mul (Const 0.0,X),Mul (Const 3.0,Const 1.0)),

Add (Mul (Const 1.0,X),Mul (X,Const 1.0)))
```

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Symbolic Differentiation D: Fexpr -> Fexpr

A classic example in functional programming:

Notice the direct correspondence with the rules of differentiation.

Can be tried out directly, as tree are "just" values, for example:

```
D(Add(Mul(Const 3.0, X), Mul(X, X)));;
val it : Fexpr =
   Add
   (Add (Mul (Const 0.0, X), Mul (Const 3.0, Const 1.0)),
        Add (Mul (Const 1.0, X), Mul (X, Const 1.0)))
```

Expressions: Computation of values

Given a value (a float) for X, then every expression denote a float.

```
compute : float -> Fexpr -> float
let rec compute x expr = match expr with
   Const r          -> r
   X           -> x
   Add(fel,fe2) -> compute x fel + compute x fe2
   Sub(fel,fe2) -> compute x fel - compute x fe2
   Mul(fel,fe2) -> compute x fel * compute x fe2
   Div(fel,fe2) -> compute x fel * compute x fe2;;
```

```
compute 4.0 (Mul(X, Add(Const 2.0, X)));;
val it : float = 24.0
```

Expressions: Computation of values

Given a value (a float) for X, then every expression denote a float.

```
compute : float -> Fexpr -> float
let rec compute x expr = match expr with
| Const r -> r
| X -> x
| Add(fe1,fe2) -> compute x fe1 + compute x fe2
| Sub(fe1,fe2) -> compute x fe1 - compute x fe2
| Mul(fe1,fe2) -> compute x fe1 * compute x fe2
| Div(fe1,fe2) -> compute x fe1 / compute x fe2;;
```

```
compute 4.0 (Mul(X, Add(Const 2.0, X)));;
val it : float = 24.0
```

Expressions: Computation of values

Given a value (a float) for X, then every expression denote a float.

```
compute : float -> Fexpr -> float
let rec compute x expr = match expr with
| Const r -> r
| X -> x
| Add(fe1,fe2) -> compute x fe1 + compute x fe2
| Sub(fe1,fe2) -> compute x fe1 - compute x fe2
| Mul(fe1,fe2) -> compute x fe1 * compute x fe2
| Div(fe1,fe2) -> compute x fe1 / compute x fe2;;
```

```
compute 4.0 (Mul(X, Add(Const 2.0, X)));;
val it : float = 24.0
```

Mutual recursion. Example: File system

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- A file system is a list of elements
- an element is a file or a directory, which is a named file system

Mutually recursive type declarations

are combined using and

```
type FileSys = Element list
and Element =
  | File of string
  | Dir of string * FileSys
```

The type of d1 is ?

Mutually recursive type declarations

are combined using and

```
type FileSvs = Element list
and Element =
  | File of string
  | Dir of string * FileSys
let d1 =
  Dir("d1", [File "a1";
            Dir("d2", [File "a2";
                       Dir("d3", [File "a3"])]);
            File "a4";
            Dir("d3", [File "a5"])
           ])
```

The type of d1 is ?

Mutually recursive type declarations

are combined using and

```
type FileSvs = Element list
and Element =
 | File of string
  | Dir of string * FileSys
let d1 =
  Dir("d1", [File "a1";
            Dir("d2", [File "a2";
                       Dir("d3", [File "a3"])]);
            File "a4";
            Dir("d3", [File "a5"])
           ])
```

The type of d1 is ?

Mutually recursive function declarations

are combined using and

Example: extract the names occurring in file systems and elements.

```
let rec namesFileSys fs = match fs with
    [] -> []
    e::es -> (namesElement e) @ (namesFileSys es)
and namesElement el = match el with
    File s -> [s]
    Dir(s,fs) -> s :: (namesFileSys fs) ;;
val namesFileSys : Element list -> string list
val namesElement : Element -> string list
```

namesElement dl ;; val it : string list = ["d1"; "a1"; "d2"; "a2"; "d3"; "a3"; "a4"; "d3"; "a5"

Mutually recursive function declarations

are combined using and

Example: extract the names occurring in file systems and elements.

```
let rec namesFileSys fs = match fs with
    [] -> []
    e::es -> (namesElement e) @ (namesFileSys es)
and namesElement el = match el with
    File s -> [s]
    Dir(s,fs) -> s :: (namesFileSys fs) ;;
val namesFileSys : Element list -> string list
val namesElement : Element -> string list
```

Summary

Finite Trees

concepts

illustrative examples

Notice the strength of having trees as values.

Notice that polymorphic types and mutual recursion are NOT biased to trees.

Summary

Finite Trees

concepts

illustrative examples

Notice the strength of having trees as values.

Notice that polymorphic types and mutual recursion are NOT biased to trees.

Summary

Finite Trees

- concepts
- illustrative examples

Notice the strength of having trees as values.

Notice that polymorphic types and mutual recursion are NOT biased to trees.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで